Review Article:
Stevens, B., Satoh, M., Auger, L. et al.: DYAMOND: the DYnamics of the Atmospheric general circulation Modeled On Non-hydrostatic Domains. Prog Earth Planet Sci 6, 61 (2019). https://doi.org/10.1186/s40645-019-0304-z 
We are pleased to announce that this review article has received the journal’s “Most Downloaded Paper Award 2020

Special Edition:
The Journal of the Meteorological Society of Japan (JMSJ) offers a Special Edition on the DYAMOND initiative, which is published in regular issues of 2019-2021. To see the content, please visit https://jmsj.metsoc.jp/special_issues_editions/DYAMOND.html.

Overview Poster of the Initiative:
Duras, J., Ziemen, F., & Klocke, D. (2021). The DYAMOND Initative. https://doi.org/10.5281/zenodo.5713492

DYAMOND Summer
  • Christensen, H. M., and Driver, O. G. A.: The fractal nature of clouds in global storm-resolving models. Geophysical Research Letters, 48, e2021GL095746 (2021). https://doi.org/10.1029/2021GL095746

  • Bao, J., Stevens, B.: The Elements of the Thermodynamic Structure of the Tropical Atmosphere. J. Meteor. Soc. Japan., 99 (2021). https://doi.org/10.2151/jmsj.2021-072 (accepted).

  • Lang, T., Naumann, A. K., Stevens, B., and Buehler, S. A.: Tropical free-tropospheric humidity differences and their effect on the clear-sky radiation budget in global storm-resolving models. Journal of Advances in Modeling Earth Systems, 13, e2021MS002514 (2021). https://doi.org/10.1029/2021MS002514

  • Roh, W., M. Satoh, and C. Hohenegger: Intercomparison of cloud properties in DYAMOND simulations over the Atlantic Ocean. J. Meteor. Soc. Japan, 99 (2021). https://doi.org/10.2151/jmsj.2021-070 (accepted). 

  • Inoue, T., K. Rajendran, M. Satoh, and H. Miura: On the semidiurnal variation in surface rainfall rate over the tropics in a global cloud-resolving model simulation and satellite observations. J. Meteor. Soc. Japan, 99 (2021). https://doi.org/10.2151/jmsj.2021-066

  • Heim, C., L. Hentgen, N. Ban, and C. Schär: Inter-model variability in convection-resolving simulations of subtropical marine low clouds. J. Meteor. Soc. Japan, 99 (2021). https://doi.org/10.2151/jmsj.2021-062

  • Shibuya, R., M. Nakano, C. Kodama, T. Nasuno, K. Kikuchi, M. Satoh, H. Miura, and T. Miyakawa, 2021: Prediction skill of the boreal summer intra-seasonal oscillation in global non-hydrostatic atmospheric model simulations with explicit cloud microphysics. J. Meteor. Soc. Japan, 99 (2021). https://doi.org/10.2151/jmsj.2021-046.

  • Judt, F., D. Klocke, R. Rios-Berrios, B. Vanniere, F. Ziemen, L. Auger, J. Biercamp, C. Bretherton, X. Chen, P. Düben, C. Hohenegger, M. Khairoutdinov, C. Kodama, L. Kornblueh, S.-J. Lin, M. Nakano, P. Neumann, W. Putman, N. Röber, M. Roberts, M. Satoh, R. Shibuya, B. Stevens, P. L. Vidale, N. Wedi, and L. Zhou: Tropical cyclones in global storm-resolving models. J. Meteor. Soc. Japan, 99, 579-602 (2021). https://doi.org/10.2151/jmsj.2021-029

  • Arnold, N. P., W. M. Putman, and S. R. Freitas: Impact of resolution and parameterized convection on the diurnal cycle of precipitation in a global nonhydrostatic model. J. Meteor. Soc. Japan, 98, 1279–1304 (2020). https://doi.org/10.2151/jmsj.2020-066

  • Dueben, P. D., N. Wedi, S. Saarinen, and C. Zeman: Global simulations of the atmosphere at 1.45 km grid-spacing with the Integrated Forecasting System. J. Meteor. Soc. Japan, 98, 551-572 (2020). https://doi.org/10.2151/jmsj.2020-016

  • Stevens, B., C. Acquistapace, A. Hansen, R. Heinze, C. Klinger, D. Klocke, H. Rybka, W. Schubotz, J. Windmiller, P. Adamidis et al.: The added value of large-eddy and storm-resolving models for simulating clouds and precipitation. J. Meteor. Soc. Japan, 98, 395-435 (2020). https://doi.org/10.2151/jmsj.2020-021

  • Hohenegger, C., L. Kornblueh, D. Klocke, T. Becker, G. Cioni, J. F. Engels, U. Schulzweida, and B. Stevens: Climate statistics in global simulations of the atmosphere, from 80 to 2.5 km grid spacing. J. Meteor. Soc. Japan, 98, 73-91 (2020). https://doi.org/10.2151/jmsj.2020-005

  • Wedi, N. P., Polichtchouk, I., Dueben, P., Anantharaj, V. G., Bauer, P., Boussetta, S., et al.: A baseline for global weather and climate simulations at 1 km resolution. Journal of Advances in Modeling Earth Systems, 12, e2020MS002192 (2020). https://doi.org/10.1029/2020MS002192

  • Satoh, M., Stevens, B., Judt, F., Khairoutdinov, M., Lin, S., Putman, W.M., Duben, P.: Global Cloud-Resolving Models. Current Climate Change Reports, 5, 172-184, (2019) https://doi.org/10.1007/s40641-019-00131-0

  • Palmer, T., and Stevens, B.: The scientific challenge of understanding and estimating climate change. Proceedings of the National Academy of Sciences, USA, 116, 24390-24395 (2019). https://doi.org/10.1073/pnas.1906691116

  • Stephan, C.C., C. Strube, D. Klocke, M. Ern, L. Hoffmann, P. Preusse, and H. Schmidt: Intercomparison of gravity waves in global convection-permitting models. J. Atmos. Sci., 76, 2739-2759 (2019). https://doi.org/10.1175/JAS-D-19-0040.1

  • Neumann P., Duben, P., Adamidis, P., Bauer, P., Bruck, M., Kornblueh, L., Klocke, D., Stevens, B., Wedi, N., and Biercamp, J.: Assessing the scales in numerical weather and climate predictions: will exascale be the rescue? Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 377, 20180148 (2019). doi:10.1098/rsta.2018.0148

  • Slides from the 2nd DYAMOND-ESiWACE Hackathon can be found at the bottom of the event-page

DYAMOND Winter