CDOQ's python bindings

Ralf Miiller

DKRZ Hamburg

June 20, 2019

<==> DKRZ

Ralf Miiller (DKRZ Hamburg) CDO’s python bindings June 20, 2019 1/12

What to expect

Overview:
@ General features
@ Installation
@ What it's not

Source Code Examples:
@ Basics Usage
o Work with temporary files
o Parallelization with Python
@ Integration with numpy/xarray/...

.. and news on cdo-1.9.7

<==> DKRZ

Ralf Miiller (DKRZ Hamburg) CDO’s python bindings June 20, 2019 2/12

WHAT ...

. is offered

@ integration of CDO into python/ruby scripts like a native library

<==> DKRZ

Ralf Miiller (DKRZ Hamburg) CDO’s python bindings June 20, 2019 3/12

WHAT ...

. is offered
@ integration of CDO into python/ruby scripts like a native library
o keeps CDOs main feature: operator chaining

<==> DKRZ

Ralf Miiller (DKRZ Hamburg) CDO’s python bindings June 20, 2019 3/12

WHAT ...

. is offered
@ integration of CDO into python/ruby scripts like a native library
o keeps CDOs main feature: operator chaining
@ multiple types of return values:

output files, numpy arrays, masked arrays, XArray
netCDF4 or XDataset handles

strings for operators, which write to stdout

None on error (optional)

<==> DKRZ

Ralf Miiller (DKRZ Hamburg) CDO’s python bindings June 20, 2019 3/12

WHAT ...

. is offered
@ integration of CDO into python/ruby scripts like a native library
o keeps CDOs main feature: operator chaining

@ multiple types of return values:

output files, numpy arrays, masked arrays, XArray
netCDF4 or XDataset handles

strings for operators, which write to stdout

None on error (optional)

@ access to all options

o -f file format
o -P OpenMP-threads

o ...
@ environment settings
@ GPL-2 licensed like CDO itself

<==> DKRZ

Ralf Miiller (DKRZ Hamburg) CDO’s python bindings June 20, 2019 3/12

... to get it
@ prebuild debian packages: python-cdo, python3-cdo
e installation via pip or conda (conda-forge)
@ or spack (https://spack.io)

<==> DKRZ

Ralf Miiller (DKRZ Hamburg) CDO’s python bindings June 20, 2019 4/12

... to get it
@ prebuild debian packages: python-cdo, python3-cdo
e installation via pip or conda (conda-forge)
@ or spack (https://spack.io)
.. to work with it
@ |10: provide automatic tempfile handling
@ 10: optional use of existing files if present
@ interactive help
o use different CDO binaries for different tasks

<==> DKRZ

Ralf Miiller (DKRZ Hamburg) CDO’s python bindings June 20, 2019 4/12

... to get it
@ prebuild debian packages: python-cdo, python3-cdo
e installation via pip or conda (conda-forge)
@ or spack (https://spack.io)
. to work with it
@ |10: provide automatic tempfile handling
@ 10: optional use of existing files if present
@ interactive help
o use different CDO binaries for different tasks
. on mistral
@ module load anaconda3/bleeding_edge

@ module load anaconda2/bleeding_edge

<==> DKRZ

Ralf Miiller (DKRZ Hamburg) CDO’s python bindings June 20, 2019 4/12

Overview

WTH ... internals

cdo.{rb,py}
@ is a smart caller of a CDO binary (with all the pros and cons)

@ doesn’t need to be re-installed for a new CDO version

@ isn't a shared library, which keeps everything in memory

@ doesn't allow write access to files via the numpy or masked arrays
See MPI-MET ort github page:

https://code.zmaw.de/projects/cdo/wiki/Cdo{rbpy}
https://github.com/Try2Code/cdo-bindings

<==> DKRZ

Ralf Miiller (DKRZ Hamburg) CDO’s python bindings June 20, 2019 5/12

https://code.zmaw.de/projects/cdo/wiki/Cdo{rbpy}
https://github.com/Try2Code/cdo-bindings

Source Code examples

Basic Python 2.7/3.x

1 from cdo import Cdo

2 import glob

3

4 cdo = Cdo()

5

6 # use a special binary

7 cdo = Cdo(cdo='/sw/rhel6-x64/cdo/cdo-1.9.5-gcc64/bin/cdo') # or later in a script
8 cdo.setCdo('/sw/rhel6-x64/cdo/cdo-1.9.5-gcc64/bin/cdo"')

9

10 # concatenate list of files into a temp file with relative time azis

11 ofile = cdo.cat(input = glob.glob('*.nc'), options = '-r')

12

13 # vertical interpolation

14 Temp3d = cdo.intlevel(100,200,500,1000, options = '-f grb',

15 input = ofile,

16 output = 'TempOnTargetLevels.grb')

17

18 # perform zonal mean after interpolation in nc4 classic format with 8 UpenMP threads
19 zonmeanFile = cdo.zonmean(input = "-remapbil,r1400x720 %s"%(Temp3d),
20 options = '-P 8 -f nc4dc')

<==> DKRZ

Ralf Miiller RZ Hamburg) CDO’s python June 20, 2019 6/12

Source Code examples

Parallelism with Python

1
2
3
4
5
6
7
8

I I N e S S S S S
W N~ O ©O0N®O A WN RO ®

from cdo import Cdo
from multiprocessing import Pool

define methods to use with the Pool
def cdozonmean(infile):
ofile = cdo.zonmean(input=infile)

files = sorted([s for s in glob.glob(nicam_path+'*/sa_tppn.nc')]) [0:20]

create the Pool and a dict for collecting the results
pool, results = Pool(4), dict()

fill and Tun the Pool, keep the connection of input and output
for file in files:

results[file] = pool.apply_async(cdozonmean, (file,))
pool.close()
pool.join()

retrieve the _real_ results from the Pool (i.e. filenames)
for k,v in results.items():

results[k] = v.get()

cdo.cat(input = [results[x] for x in files],output = wrk_dir+'test.nc')

<==> DKRZ

Ralf Miiller RZ Hamburg) CDO’s python June 20, 2019 7/12

Source Code examples

XArray/Numpy interaction

plotting with XArray
cdo. topo (returnXArray="'topo') .plot ()

I0 with XDataset
dataSet = xarray.open_dataset(cdo.topo('global _0.1"',
options = '-f nc'))
dataSet['topo'] = 1.0 + np.abs(dataSet['topo'l)
cdo.fldmin(input=dataSet,returnArray='topo') .min()

numpy/matplotlib-based plotting

or with masked arrays

from matplotlib import pylab

import numpy

oro = cdo.setrtomiss(-20000,0,
input='-sellonlatbox,-20,60,20,60 -topo',
returnMaArray="'topo"')

pylab.imshow (numpy.flipud(oro))

pylab. show()

Ralf Miiller (DKRZ Hamburg) CDO’s python bindings June 20, 2019 8/12

Source Code examples

Tempfiles - painless usage (mostly)

Using tempfiles can become a problem

Tempfiles are usually removed at the end of a script. But in long-lasting or
SIGKILLed interactive session (ipython/jupyter notebooks) with possibly many
users per node the system tempdir can get filled up sooner or later.

In other words: How to avoid a reboot?

<==> DKRZ

Ralf Miiller (DKRZ Hamburg) CDO’s python bindings June 20, 2019 9/12

Source Code examples

Tempfiles - painless usage (mostly)

Using tempfiles can become a problem

Tempfiles are usually removed at the end of a script. But in long-lasting or
SIGKILLed interactive session (ipython/jupyter notebooks) with possibly many
users per node the system tempdir can get filled up sooner or later.

In other words: How to avoid a reboot?

Manual clean-up for all files created by cdo.py belonging to the current user

cdo.cleanTempDir ()

<==> DKRZ

Ralf Miiller (DKRZ Hamburg) CDO’s python bindings June 20, 2019 9/12

Source Code examples

Tempfiles - painless usage (mostly)

Using tempfiles can become a problem

Tempfiles are usually removed at the end of a script. But in long-lasting or
SIGKILLed interactive session (ipython/jupyter notebooks) with possibly many
users per node the system tempdir can get filled up sooner or later.

In other words: How to avoid a reboot?

Solution

Manual clean-up for all files created by cdo.py belonging to the current user

cdo.cleanTempDir ()

Solution
Use other tempdir like /dev/shm
cdo = Cdo(tempdir='/dev/shm/{0}'.format(os.environ['USER']))

<==> DKRZ

Ralf Miiller (DKRZ Hamburg) CDO’s python bindings June 20, 2019 9/12

Source Code examples
More Examples at github

Units test for all features available at Github
@ numpy or masked arrays, XArray, XDataset, cdf handles ...

key value return type
returnArray varname numpy array
returnMaArray | varname | numpy masked array
returnXarray varname XArray
returnXDataset Bool XDataset handle
returnCdf Bool netCDF4 file handle

conditional output
return None on error

exception handling

output operators

<==> DKRZ

Ralf Miiller (DKRZ Hamburg) CDO’s python bindings June 20, 2019 10/12

https://github.com/Try2Code/cdo-bindings/blob/master/python/test/test_cdo.py

News on CDO-1.9.7

Operators and options:

€00 option --worker on dyanond Skm

- . 12
@ Grib2 decodeing speedup: —--worker <N> | [Ei=e u

usage

e set number for async decompression
operations on a GRIB2 input file

Speedup

Memory

o best used on files with many records
per timestep

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

o Grib-encoding: --eccodes aer of orker
choose between cgribex and eccodes to work with GRIB1

e Find timesteps with min/max: timminidx, timemaxidx, yearminidx,
yearmaxidx

For more please check:Tutorial, FAQ and the Operator News

<==> DKRZ

Ralf Miiller (DKRZ Hamburg) CDO’s python bindings June 20, 2019 11/12

https://code.mpimet.mpg.de/projects/cdo/wiki/Tutorial
https://code.mpimet.mpg.de/projects/cdo/wiki/FAQ
1Ghttps://code.mpimet.mpg.de/projects/cdo/boards/53

(10*rand) .to_i.times {
puts "thank you for your attention!"

}

audience.select {|human|
human.has_questions?

}.each {|human| human.ask!(please: true) }

Ralf Miiller (DKRZ Hamburg) CDO'’s python bindings

<==> DKRZ

June 20, 2019

12/12

Appendix: Constructor

1 def __init__(self,

2 cdo =
3 returnCdf =
4 returnNoneOnError =
5 forceOutput =
6 cdfMod =
7 env =
8 debug =
9 tempdir =
10 logging =
11 logFile =
12

13

14 if 'CDO' in os.environ:

15 self.CDO = os.environ['CDO'
16 else:

17 self.CDO = cdo

Ralf Miiller RZ Hamburg)

'cdo!

False,

False,

True,

CDF_MOD_NETCDF4,
os.environ,

False,
tempfile.gettempdir (),
False,

StringI0()):

rTead path to CDO from the environment if given

]

CDO's python

WO OH KW R R R

path to CDO binary

always return netCDF4 filehandle
don't raise exception, return No
global switch for cond. output
set the cdf module to by used
environment for the object

print commands, return codes, et
location for temporary files

log commands internally

<==> DKRZ

June 20,2019 1/3

Appendix: Pool.apply_async syntax explained

1 from multiprocessing import Pool

2

3 def f(x, *args, **kwargs):

4 print x, args, kwargs

5

6 args, kw = (1,2,3), {'cat': 'dog'}
7

8 print "# Normal call"

9 £(0, *args, **kw)

10

11 print "# Multicall"

12 P = Pool()

13 sol = [P.apply_async(f, (x,) + args, kw) for x in range(2)]
14 P.close()

15 P.join()

16

17 for s in sol: s.get()

<==> DKRZ

Ralf Miiller (DKRZ Hamburg) DO’s python bindings June 20, 2019 2/3

Appendix: Parallel with Ruby

1
2
3
4
5
6
7
8

S S
ok W R O ©

require 'parallel'
require 'cdo'

cdo = Cdo.new
files = Dir.glob("*nc")

ofiles = Parallel.map(files,:in_processes => nWorkers).each {|filel
basename = file[0..-(File.extname(file) .size+1)]
ofile = cdo.remap(targetGridFile,targetGridweightsFile,
:input => file,
routput => "remapped_#{basename}.nc")

}

Merge all the results together
cdo.merge(:input => ofiles.join(" "),:output => 'mergedResults.nc')

<==> DKRZ

Ralf Miiller RZ Hamburg) P June 20, 2019 3/3

	Overview

