The Integrated Forecasting System (IFS)

Nils P. Wedi European Centre for Medium-Range Weather Forecasts (ECMWF)

(Schulthess et al, 2019)

ECMWF's progress in degrees of freedom

(levels x grid columns x prognostic variables)

ECMVF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

IFS dynamical core options

Model aspect	IFS-FVM	IFS-ST	IFS-ST (NH option)
Equation system	fully compressible	hydrostatic primitive	fully compressible
Prognostic variables	$\rho_{\rm d}, u, v, w, \theta', \varphi', r_{\rm v}, r_{\rm l}, r_{\rm r}, r_{\rm i}, r_{\rm s}$	$\ln p_{\rm s}, u, v, T_{\rm v}, q_{\rm v}, q_{\rm l}, q_{\rm r}, q_{\rm i}, q_{\rm s}$	$\ln \pi_{\rm s}, u, v, d_4, T_{\rm v}, \hat{q}, q_{\rm v}, q_{\rm l}, q_{\rm r}, q_{\rm i}, q_{\rm s}$
Horizontal coordinates	λ, ϕ (lon–lat)	λ, ϕ (lon–lat)	λ, ϕ (lon–lat)
Vertical coordinate	generalized height	hybrid sigma-pressure	hybrid sigma-pressure
Horizontal discretization	unstructured finite volume (FV)	spectral transform (ST)	spectral transform (ST)
Vertical discretization	structured FD-FV	structured FE	structured FD or FE
Horizontal staggering	co-located	co-located	co-located
Vertical staggering	co-located	co-located	co-located, Lorenz
Horizontal grid	octahedral Gaussian or arbitrary	octahedral Gaussian	octahedral Gaussian
Time stepping scheme	2-TL SI	2-TL constant-coefficient SI	2-TL constant-coefficient SI with ICI
Advection	conservative FV Eulerian	non-conservative SL	non-conservative SL

Dyamond configuration

(Kühnlein et al, 2019)

Schematic description of the *spectral transform method* in the ECMWF IFS model

FFT: Fast Fourier Transform, LT: Legendre Transform

The IFS model grid

Integrated Forecasting System (IFS)

A further ~20% reduction in gridpoints => ~50% less points compared to full grid

Parametrizations

- Shallow, (deep) and midlevel convection, bulk mass flux scheme (Tiedke, 1988; Bechtold, 2008, 2014)
- Single moment cloud microphysics scheme (Tiedke, 1993; Forbes et al, 2011)
- PBL scheme and coupling to TOFD and dynamics (Beljaars, 1991; 2018)
- Orographic gravity wave drag and TOFD (Beljaars et al, 2004)
- Non-orographic drag (Orr et al, 2010)
- Radiation (10km grid in Dyamond; Hogan et al, 2018)
- Ocean waves (0.25 degrees ECWAM; Janssen et al, 2018)

Orography representation

• Differences in orography (and associated filters applied) have a significant impact on surface stresses and circulation patterns on weather & climate models.

Elvidge et al 2019

Global 1.45km spectra: Mid-Troposphere 500hPa

Impact of parametrizations + orography, (Malardel + Wedi, JGR 2016)

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

The tile scheme allows for a simple representation of **surface heterogeneity** over land and for fractional sea ice over the ocean

Typical near surface diurnal cycle structure of temperature profiles

Anton Beljaars

Vertical surface fluxes

friction velocity² (correlated with momentum flux)

$$u_*^2 = \left[\frac{\kappa^2}{\ln^2(z_1/z_{0m})}\right] * F_m(z_{0m}, z_{0h}, Ri_b) * |v_1|^2$$
Lowest model level or 10m wind speed

$$\overline{w'q'}_0 = \left[\frac{\kappa^2}{\ln(z_1/z_{0m})\ln(z_1/z_{0q})}\right] * F_q(z_{0m}, z_{0q}, Ri_b) * |v_1| * (q_S - q_1)$$

sensible heat flux

$$\overline{w'\theta'}_0 = \left[\frac{\kappa^2}{\ln(z_1/z_{0m})\ln(z_1/z_{0h})}\right] * F_h(z_{0m}, z_{0h}, Ri_b) * |v_1| * (\theta_S - \theta_1)$$

Improved surface boundary layer description

... wind gust details at 1.45km

Global simulations at 1.45 km resolution

• We perform uncoupled (no ocean, no wave model) simulations with IFS.

• Weather simulations at full complexity including recent date initial conditions, real-world topography, state-of-the-art physical parametrizations and diabatic forcing including shallow convection, turbulent diffusion, radiation and five categories for the water substance (vapour, liquid, rain, ice, snow)

- Simulations with 62 and 137 vertical levels
- Simulations with hydrostatic and non-hydrostatic equations

Energy spectra

- The spectra @1.45 km are reasonable and show clear improvements compared to a simulations at 9 km.
- Effective resolutions is between 5 and 10 km.

IFS vertical velocity spectra 500hPa at 1.45 km H vs NH

CECMWF

Vertical velocity [m/s]

Run 1: H. 120s. 0PC: Run 2: NH. 120s. 1PC: Run 3: H. 30s. 2PC: Run 4: NH. 30s. 2PC

Run 1 shows the • smallest area with strong convection

East Africa

- Run 1 and 2 are • similar
- Run 3 and 4 are • similar
- -> small differences between H and NH -> large differences as Function of time step choice

Indonesia

PDFs of vertical velocity – Impact of resolution

- Please note the logarithm on the y-axis.
- Distributions are symmetric if deep convection is parametrised.
- There are stronger upward velocities if convection is represented explicitly.
- Extreme velocities increase as resolution is increasing.

IFS vs FV3 kinetic energy spectra sfc

IFS vs FV3 kinetic energy spectra 200hPa

T+48h Same initial conditions Dyamond

Stratosphere

Inna Polichtchouk

Horizontal resolution sensitivity of temperature biases

Stratosphere cools in the global mean with increase in horizontal resolution \rightarrow biases worse in the lower- to mid- stratosphere with increase in horizontal resolution. Affects all forecast ranges, from medium to seasonal.

Resolved dynamics the culprit. Forecasts with no physical parametrizations, show the same horizontal resolution.

Stratosphere

Vertical resolution sensitivity of temperature

Question: Does increasing vertical resolution eliminate the horizontal resolution sensitivity?

200m vertical resolution in the 150-50hPa region enough to eliminate horizontal resolution sensitivity (up to TCo1279 horizontal resolution).

Where do we spend the time (& energy) ? Cycle 45r1 operations

Data processing of Dyamond data

- Cdo tools (handling also gptosp and sptogp ?)
- Data size
 - Grib 16 bit per value storage; spectral data complex packing
 - 9km: 6.599.680 points
 - 4km: 26.306.560 points
 - 1.45km: 256.800.000 points

The ESiWACE project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 675191.

Additional slides