NICAM : Data and Parameterization

Ryosuke Shibuya (Japan Agency for Marine-Earth Science and Technology)

① The information about NICAM

- discretization, parameterization, notes of provided data for DYAMOND... 2 Analysis for prediction skills of an intra-seasonal oscillation in DYAMOND models

■ NICAM: Non-hydrostatic ICosahedral Atmospheric Model

Design of basic equations (Satoh et al., 2008):

- Full compressible system
 - solving acoustic wave directly (in the horizontal)
- Flux form
 - finite volume method
- Deep atmosphere
 - including all metrics terms and Coriolis terms
- An orthogonal basis (e_1, e_2, e_3) fixed to the earth
 - avoiding the "pole problem"

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) &= \mathbf{0}, \\ \frac{\partial \rho \mathbf{v}}{\partial t} + \nabla \cdot (\rho \mathbf{v} \otimes \mathbf{v}) &= -\nabla p - \rho g \hat{\mathbf{k}} - 2\rho \mathbf{\Omega} \times \mathbf{v} \\ \frac{\partial (\rho q_{\mathrm{d}})}{\partial t} + \nabla_{\mathrm{h}} \cdot (\rho q_{\mathrm{v}} \mathbf{v}_{\mathrm{h}}) + \frac{1}{r^{2}} \frac{\partial (r^{2} \rho q_{\mathrm{d}} w)}{\partial z} &= s_{\mathrm{v}}, \\ \frac{\partial (\rho q_{\mathrm{v}})}{\partial t} + \nabla_{\mathrm{h}} \cdot (\rho q_{\mathrm{v}} \mathbf{v}_{\mathrm{h}}) + \frac{1}{r^{2}} \frac{\partial (r^{2} \rho q_{\mathrm{v}} w)}{\partial z} &= s_{\mathrm{v}}, \\ \frac{\partial (\rho q_{\mathrm{l},j})}{\partial t} + \nabla_{\mathrm{h}} \cdot (\rho q_{\mathrm{l},j} \mathbf{v}_{\mathrm{h}}) + \frac{1}{r^{2}} \frac{\partial (r^{2} \rho q_{\mathrm{l},j} (w + w_{\mathrm{l},j}^{*}))}{\partial z} &= s_{\mathrm{l},j}, \\ \frac{\partial \rho e}{\partial t} + \nabla \cdot (h \rho \mathbf{v}) &= \mathbf{v} \cdot \nabla p + q_{\mathrm{heat}}, \\ \frac{\partial (\rho q_{\mathrm{i},k})}{\partial t} + \nabla_{\mathrm{h}} \cdot (\rho q_{\mathrm{i},k} \mathbf{v}_{\mathrm{h}}) + \frac{1}{r^{2}} \frac{\partial [r^{2} \rho q_{\mathrm{i},k} (w + w_{\mathrm{i},k}^{*})]}{\partial z} &= s_{\mathrm{i},k}, \end{aligned}$$

■ Icosahedral horizontal grid (Tomita and Satoh, 2004)

- Grid system: Arakawa A-grid
 - all variables at triangular vertices (P_i)
 - Hexagonal (pentagonal) control volume

OEasy to implement Ogood for parallel computing Ono computational mode × non-physical 2-grid scale structure

- Spring dynamics smoothing (Tomita et al., 2002)
 - Triangular vertices (P_i) connected by spring
 - solving the spring dynamics

\rightarrow The system is adjusted to the static balance

$$M\frac{d\mathbf{w}_0}{dt} = \sum_{i=1}^6 k(d_i - \bar{d})\mathbf{e}_i - \alpha \mathbf{w}_0, \frac{d\mathbf{r}_0}{dt} = \mathbf{w}_0$$

- Relocation of grid points to a gravitational center in a control volume (G_i)
 - guarantee the 2nd order accuracy of numerical operator at all of grid points

■ Time-integration method (Satoh et al., 2004): similar to WRF

OTime-splitting method

- For fast mode (advection, ...): the forward-backward scheme
 - solving horizontal propagation of fast wave explicitly,
 - solving vertical propagation of fast wave implicitly (HEVI)
- For slow mode (physics, ...): the 2nd (3rd)-order Runge-Kutta scheme
- The time-step (G-level 11, dx = 3.5 km): $\Delta \tau = 1.6666...s$, $\Delta t = 10 s$.

— in case of $\Delta t = 15$ s, a severe initial shock seems to happen....

NICAM: physics schemes

	Grid system	microph	microphysics		ion	Land-surface	
NICAM	Tomita et al., 2008a	Tomita, 2008b; Roh et al., 2017		Sekiguchi and Nakajima, 2008		Takata et al. 2003	
ICON	Giorgetta et al., 2018	Doms et al., 2011		Baker et al	., 2003	Heise et al., 2006	
MPAS	Skamarock et al., 2012	Thompson, 2004		Iacono et al., 2008		Niu et el 2011	
FV3	Putman and Lin 2007	Chen and L	in, 2013 Anderson et a		al., 2004		
GEOS5	Futiliali aliu Lili, 2007	Bacmeister et a	ıl., 2006, etc Colarco et a		1., 2010	Koster et al., 2000	
SAM	Khairoutdinov	03	Collins et al., 2006		Lee and Khairoutdinov, 2015		
	Convective pa (D: deep, S: sha	ıram. Gravity allow) (O: orogra		wave param. hic, N: non-oro)	Turbulence (T: TKE-type, L: LES-type)		
NICAM	None		None		T: Nakanishi and Niino, 2006		
ICON	None		O: Lott and Miller, 1997 NO: Orr et al., 2010		T: Raschendorfer, 2001 L: Dipankar et al., 2015		
MPAS	D, S: scale-aware Tied 1989)), S: scale-aware Tiedtke (Tiedtke, 1989)		O: Shin et al., 2010		T: Nakanishi and Niino, 2006	
FV3	S: Zhao et al., 2009		O: Lott and Miller, 1997 (as mountain blocking effect)		?		
GEOS5	D: Freitas et al. S: Bretherton,	, 2018 2009	O: McF NO: Garc	arlane, 1987 ia and Boville, 1994	T: Molod et al., 2015		
SAM	None		None		L: Khairoutdinov and Randall, 2003		

SUGGESTION: Let's make a reference table (at DKRZ homepage) in such a format

NICAM: physics schemes

Microphysics scheme (Tomita, 2008): NSW6 (NICAM Single-moment Water 6)

• 6 categories for vapor, liquid (cloud water, rain) and solid (cloud ice, snow, graupel)

NICAM: physics schemes

 From the 1st DYAMOND Hackathon (thanks to Daniel Klocke) Solid (cloud ice, snow, graupel) water

0.06 0.12 0.18 0.24 0.3 0.36 0.42 0.48 0.54 0.6

40 day averaged vertical integrated ice

Daniel Klocke

Refactoring/Optimization history on the K computer

• Elapse time of benchmark test (~ GL11, 10 steps) on the K computer.

Rule of name: O(1:1and, o:ocean, m:3D atm, s: 2D atm) O(a:ave, s:snap)_(variable)

(Ex; sa_tppn.nc \rightarrow 2D atm averaged precipitation)

Var	Description	Mistral	Var	Description	Mistral
la_tg	soil temperature	×	oa_ist	sea ice skin temperature	×
la_wg	soil moisture	×	oa_icr	sea ice concentration	×
la_snw	snow amount	×	oa_gflx_adj	Q-flux	×
la_lai	leaf area index	×	dfq_isccp2	ISCCP cloud fraction (ave)	×
la_rof	total runoff	×	ds_isccp2	ISCCP cloud fraction (snap)	×
la_rofl	runoff from each land layer	×	ms_dh	diabatic heating rate	×
la_rofs	runoff by saturation excess	×	ms_u	velocity u	\bigcirc
la_rofi	runoff by infiltration excess	×	ms v	velocity v	\bigcirc
la_rofo	runoff by surface storage	×	1115_V	velocity v	U
	overflow		ms_w	velocity w	\bigcirc
la_rofb	runoff from base	×	ms tem	temperature	0
ls_tg	soil temperature	×	me av	specific humidity	\bigcirc
ls_wg	soil moisture	×	IIIS_qv	specific furnitity	0
ls_snw	snow amount	×	ms_rh	relative humidity	0
oa sst	sea surface temperature	X	ms_pres	pressure	0
0 u_ 55t	seu surruce temperature		ms_qc	specific cloud water content	\bigcirc
oa_ice	sea ice mass	×	ms_qr	specific rain water content	\bigcirc
oa_snow	snow on sea ice	×	ms_qi	specific cloud ice content	\bigcirc

変数	Description	Mistral	変数	Description	Mistral
ms_qs	specific snow content	\bigcirc	ss_tppn	precipitation	0
ms_qg	specific graupel content	\bigcirc	ss_lwd_toa	downward LW at TOA	\bigcirc
ms_lwhr	diabatic heating rate by LW	\bigcirc	ss_lwu_toa	upward LW at TOA	\bigcirc
ms_swhr	diabatic heating rate by SW	\bigcirc	ss_lwu_toa_c	upward LW (clear sky) at TOA	\bigcirc
ms_rh	relative humidity	0	ss_swd_toa	downward SW at TOA	0
sa_cld_frac	cloud fraction	\bigcirc	ss_swu_toa	upward SW at TOA	0
sa_cldi	ice water path	\bigcirc	ss swu toa c	upward SW (clear sky)at TOA	0
sa_cldw	liquid water path	\bigcirc	ss lwd sfc	downward LW at the surface	\bigcirc
sa_evap	evaporation	\bigcirc	ss lwn sfc	unward I W at the surface	\bigcirc
sa_slp	mean sea level pressure	\bigcirc	ss_swd_sfc	downward SW at the surface	\bigcirc
sa_slp_ecm wf	mean sea level pressure formulated by ECMWF	×	ss_swu_sfc	upward SW at the surface	×
ss_q2m	specific humidity at 2m	0	ss_lwd_sfc_c	downward LW (clear sky) at the surface	0
ss_t2m	temperature at 2m	0	ss lwu sfc c	upward I.W (clear sky) at the	\bigcirc
ss_tem_atm	mass weighted atmospheric	×	55_1 // 4_ 51 0_0	surface	U
	temperature	_	ss_swd_sfc_c	downward SW (clear sky) at the surface	0
ss_tem_sfc	skin temperature	0			
ss_u10m	velocity u at 10m	\bigcirc	ss_swu_sfc_c	upward SW (clear sky) at the	\bigcirc
ss_v10m	velocity v at 10m	\bigcirc		Suitact	
ss_vap_atm	precipitable water	0			

Var	Description	Mistral	Var	Description	Mistral
ss_lh_sfc	latent heat flux	0	sa_tauu	surface stress in the longitudinal	×
ss_sh_sfc	sensible heat flux	\bigcirc		direction	
ss_tppn_ene rgy	other energy flux due to precipitation	0	sa_tauv	surface stress in the latidudinal direction	×
ss_evap_en	other energy flux due to evaporation	0	ms_omg_p3	Vertical velocity (Pa/s) at 850, 700, 500 hPa	×
ss_albedo	surface albedo (inc. scattering)	0	ms_rh_p3	Relative humidity at 850, 700, 500 hPa	×

Output interval: **3 h** for 3D variables and **15 min** for 2D variables, **CDO is ok**.

Outputs are already converted from the icosahedral data to separated lat-lon netcdf
O Both "averaged" and "snapshot" outputs would be available for 2D variables
O Missing variables (at 2019/6/17 on Mistral):

- sa_tauu, sa_tauv (surface wind stress), ss_swu_sfc (upward SW radiation at surface)
- ms_omg_p3, ms_rh_p3 (omega (Pa/s), relative humidity at 850, 700, 500 hPa)

 \bigcirc CAPE, SIN is not in the output list

In 3.5 km NICAM simulation, a severe initial shock is found for the first two days
— too large precipitation at 1st and 2nd August, 2016

• When taking an average, please exclude the first two days...

• A new simulation of 3.5 km experiment without the initial shock has been completed — the new data will be transported to Mistral until July at the latest

• Although a severe initial shock is found in NICAM 3.5 km simulation, a tropical cyclone "OMAIS" is successfully simulated as a hindcast experiment

(So the simulation itself is likely not broken even in the 1st experiment...)

The Boreal Summer Intra-Seasonal Oscillation

OTropical intra-seasonal oscillation (ISO) has a significant amplitude (**BSISO**)

— characterized by northwest-southeastward tilted rain band (e.g., Yasunari 1979)

OIt is suggested that BSISO is a source of **an intra-seasonal predictability**

– possibly leading to that of teleconnection pattern in the Asian region

The Boreal Summer Intra-seasonal Oscillation

○ In the DYAMOND period, the BSISO with a relatively large amplitude occurred

- A good target for the DYAMOND project as a hindcast experiment
- It is valuable to clarify forecast skills of the BSISO by DYAMOND models

NICAM 7 km,

white (raw OLR), green/pink (negative/positive intra-seasonal scale OLR)

Representation by a BSISO Index (Kikuchi et al., 2012)

 \bigcirc Assumption:

The BSISO mode is constructed **by the 1st and 2nd mode of <u>OLR</u> fields in EEOF** in JJA from1979 to 2009, with lags of -10, -5, and 0 days

 \Rightarrow the time/special structure of the BSISO can be represented by **PC**₁ and **PC**₂

Time-evolution of BSISO by CERES from 1^{st} August 2016 $\sim 10^{th}$ September 2016

O Good point: Intuitive understanding, applicable for an evaluation of forecast skills

Evaluation of Forecast skill score (Matsueda and Endo, 211)

- (PC_1, PC_2) is obtained by projecting simulated/observed seasonal-filtered OLR field to EEOF1,2
- Bivariate correlation (COR):
 - Cosine of an angle between (PC_1, PC_2) of the observation and a model on the phase space (COR of 1.0 means perfect prediction except for amplitude)

Forecast scores for NICAM (3.5 km, 7 km), FV3, SAM

• The forecast scores for DYAMOND models are evaluated by their OLR on Mistral

Forecast scores for ARPNH, IFS (9km, 4km), GEOS

• The forecast scores for DYAMOND models are evaluated by their OLR on Mistral

Forecast scores for MPAS (3.75, 7.5 km), ICON (5.0, 2.5km)

• The forecast scores for DYAMOND models are evaluated by their OLR on Mistral

Analysis plan for understanding the model biases

• The forecast scores for DYAMOND models based on COR

Maritime

Continent

phase 3

Bay of Bengal

phase 2

-2

 Too fast propagation of BSISO (ARPNH, IFS 9km, ICON 2.5km, 5km)

Analysis plan for understanding the model biases

 The contribution for the time-evolution of BSISO by each term will be revealed by evaluating the time-tendency of budget terms of MSE (Sobel & Malony 2012, Yokoi & Sobel, 2015)

• The targeted area \Rightarrow Over the Indian Ocean (0N – 10S, 75-100)

Analysis plan for understanding the model biases

Time-evolution of each term in the MSE equation (ERA-Interim) over the target area during 1st August 2016 ~ 10th September 2016

Regression analysis on (h) and (∂_th) can reveal what process is responsible for the maintenance of the BSISO amplitude and phase propagation (not shown)
The budget analysis using DYAMOND data

⇒ obtaining the suggestion <u>for underestimation/slow propagation</u> of BSISO in the DYAMOND models

Summary

The information about NICAM is described in the former part

- discretization, parameterization, notes for provided data in DYAMOND

- Please see Satoh et al. (2008, 2014, 2017) for further detail

- A severe initial shock bias in 3.5 km NICAM at 1st and 2nd August
- A new simulation of 3.5 km experiment has been completed
 - the new data will be transported until July at the latest

The BSISO with a large amplitude occurred during the DYAMOND period

- All of the models show quite good prediction score
 - ⇒ over 4 weeks as the ensemble of the DYAMOND models
 - indicating the advantage of high-resolution global models

for the forecast of BSISO

- Systematic errors for the simulation of BSISO are confirmed
 - the under estimation of BSISO over the Indian Ocean, slow propagation
 - \Rightarrow This is further examined by evaluating the MSE budget analysis