The EuroHPC pre-exascale supercomputer of the North Dr. Kimmo Koski, 30 June 2020

# The EuroHPC initiative

- The EuroHPC Joint Undertaking will pool EU and national resources in high-performance computing (HPC)
   oacquiring and providing a world-class supercomputing and data infrastructure for Europe's scientific, industrial and public users
   osupporting an ambitious research and innovation agenda
- The EuroHPC declaration has been signed by **32 European countries**
- The first generation of EuroHPC systems announced in June 2019

   o3 pre-exascale systems (150+ Pflop/s) to Finland, Italy and Spain
   o5 petascale systems (4+ Pflop/s) to Czech Republic, Bulgaria, Luxembourg, Portugal and Slovenia

# LUMI consortium

- Unique consortium of 10 countries with strong national HPC centers and competence gives an unique opportunity for knowledge transfer and sharing and providing user support for the system
- The resources of LUMI will be allocated per the investments
- The share of the EuroHPC JU (50%) will be allocated by a peer-review process (cf. PRACE Tier-o access) and available for all European researchers
- The shares of the LUMI partner countries will be allocated by local considerations and policies seen and handled as extensions to national resources



## LUMI Leadership Computing Facility

UMI

100% hydroelectric energy up to 200 MW

Very reliable power grid: Only one 2 min outage in 36 years

100% free cooling, PUE 1.03

Waste heat reuse: effective energy price  $35 \in /MWh$ , negative CO<sub>2</sub> footprint: 13500 tons reduced every year

Extreme connectivity: Kajaani DC is a direct part of the Nordic backbone. 4x100 Gbit/s to GEANT in place, can be easily scaled up to multi-terabit level

Elevated security standards guaranteed by ISO27001 compliancy

### **LUMI Timeline**



## LUMI system architecture



## **Enhanced user experience**

- In addition to traditional command-line interface, we wish to support high-level interfaces on LUMI, i.e. seamlessly integrate Jupyter Notebooks, Rstudio and similar to back-end to LUMI
- A rich stack of pre-installed software, community and commercial both
- Datasets as a Service: curated large reference datasets available and maintained

## LUMI user support

- LUMI user support and a centralized help-desk by the distributed LUMI User Support Team
  - The model is based on a network of dedicated LUMI experts: each LUMI partner will provide one full-time person for the task
  - OUser Support Team will also provide end-user training, maintain the software portfolio and user documentation of the system
- "Level 3" support (e.g. application enbling, methodology support) via national efforts

# 

## **Resource allocation (tentative)**

- LUMI resources are allocated in terms of GPU-hours, CPU-core-hours and storage hours
  - Each project applies and gets a combination of this
  - No dedicated hardware all users can access the whole system within the batch job policies
  - All countries receive shares of these pools per their share of the TCO
- Access provided by the LUMI Consortium countries according to local policies, for the EC's share PRACE or a similar mechanism will be used
- Resources brokered in terms of
  - Preparatory access projects (XS) single-PI
  - Development access projects (S) single-PI
  - General access (Tier-1) projects (M) single-PI
  - Extreme scale (Tier-o) projects (L) single-PI, should be mostly GPU hours
  - Community access projects (XL) multi-PI, multi-year

## Plans for batch job queue policies

| Queue       | Max Wall-Time<br>(hh:mm) | Max Resources          | Remarks                                                                                                               |
|-------------|--------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------|
| test        | 00:30                    | 2% GPUs / 2% CPU cores | Testing and debugging queue. Max 1 job per user, high priority                                                        |
| short       | 06:00                    | 2% GPUs / 2% cores     | Small jobs for backfilling                                                                                            |
| default     | 48:00                    | 50% GPUs / 50% cores   | Standard queue for production work                                                                                    |
| longrun     | 168:00                   | 2% GPUs / 2% cores     | Maximum one long job per user, lower priority                                                                         |
| large       | 24:00                    | 99% GPUs / 99% cores   | By special arrangement only. One job per user at a time. Draining of the system for large queue jobs during weekends. |
| interactive | 06:00                    | 4 GPUs / 128 cores     | for interactive batch jobs, max 1 job per user                                                                        |
| serial      | 06:00                    | 1 GPU / 64 cores       | Number of jobs per user limited                                                                                       |

# How to prepare for LUMI?

- Thinking projects and use cases for LUMI
  - Cases for Tier-o grand challenges
  - Combining simulation and AI methods within the same workflow
- There is a vast pool of GPU-enabled community codes
  - See if your favorite software suite already has been enabled, and if not, consider moving to a competing package that is
- Modernizing applications and GPU-enabling them
  - "even if it works, fix it"
  - CUDA/HIP, OpenACC or OpenMP5, or high-level libraries and frameworks

## **Concluding remarks**

• Unprecendent amount of computational resources and capabilities available for universities and research institutions in the LUMI consortium countries

oComplemented by competence building and user support activities

- LUMI, the Queen of the North: leadership-class resource designed for a broad range of user communities and workloads, with an enhanced user experience
  - oLUMI will be a GPU system, which needs some preparatory work but it will be a robust production system, and not experimental or esoteric in any manner
- Modernizing HPC applications for harnessing the largest systems is not trivial, and needs a lot of focused effort but it will pay off olt is time already to start preparing for the LUMI era