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Goal: Improving a climate model to improve rainfall 
predictions using machine learning (ML) 
 
A	global	cloud-resolving	model	(GCRM)	with	a	finer	grid	of	1-3	km	may	(with	work)	beBer	
simulate	individual	storm	clouds	and	mountains	than	a	convenConal	25-200	km	grid	GCM		

	….but	is	too	computaConally	intense	for	ensembles	of	mulCdecadal	
integraCons.	
	
Goal:		

Use	a	realisCc	GCRM	for	training	a	skillful	machine-learning	based	
parameterizaCon	of	subgrid	clouds	and	precipitaCon	for	a	coarser-grid	global	
climate	model.	



Coarse-resolution dynamics and parameterized 
physics 

Apparent	heaCng	(K/day)	

Apparent	moistening	(g/kg/day)	
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Aqua-planet 
prototype 



Past work:  Training ML using a coarse-grained 4 km tropical 
channel simulation 

Training regionTesting region

Coarse-graining

A

B
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•  160	km	coarse	(low-res)	grid	
•  Calculate	Q1,2(r,	t)	(coarse-grid	‘moist	physics’	tendencies		
						including	radiaCon)	as	residuals	of	dynamical	equaCons.	
•  Unified	moist	physics,	turbulence	and	radiaCon	parameterizaCon:			

Learn	Q1,2	as	funcCons	of	local	column	condiCons	using	a	neural	net.		

106	training	boxes	
from	80-day	simulaCon	

•  Use	80-day	4	km	aquaplanet	run	as	‘truth’	to	machine-learn	
moist	physics	parameterizaCon	for	the	low-res	model.		

•  Goal:	forecast	with	low-res	dycore	+	ML	param	should	
match	hi-res	run.	

	

Brenowitz	and	Bretherton	2018,	2019;	Rasp	et	al.	2018;		
O’Gorman	and	Yuval	2020	



Column Moist Physics Parameterization 

Brenowitz	and	Bretherton	2018,	2019	
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Couple the ANN to the flow solver on 160 km grid  
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Precipitable	water	aeer	5	days	
Brenowitz	and	Bretherton	(2019)	

If	inputs	and	error	metric	are	carefully	designed	to	prevent	rapid	model	blow-up,	
hi-res	model	is	skillfully	forecast	by	low-res	model	with	NN	parameterizaCon	

…but	the	‘climate’	slowly	dries	aeer	10	days	toward	a	weaker	ITCZ	
See	Rasp	et	al.	(2018,	GRL)	and	O’Gorman	and	Yuval	(2020,	arXiv)	for	other	aquaplanet	
successes	with	similar	methods	applied	to	related	models.	

‘Truth’	 ‘Forecast’	



Does our network behave realistically? 

•  Observed precipitation increases 
exponentially with humidity 

•  Neural networks behave the 
same 
•  Average inputs over bins of moisture 
•  Predict with averaged inputs 

8	

Brenowitz,	et.	al.	(2020).	Arxiv	



Realistic GCM 



Can	we	apply	same	ML	approach	to	GFDL’s	3	km	FV3-GFS	global	atmospheric	model?	

FV3-GFS	DYAMOND	run	
S.-J.	Lin	and	Xi	Chen,	GFDL	



Training dataset:  nudged 3 km SHiELD (modified 
FV3-GFS) 
•  Training dataset: 40 d ‘nudged DYAMOND’ simulation on GAEA (1 Aug to 9 Sep 2016): 

•  Observed SSTs 

•  Light nudging (𝝉 = 1 day) of 3 km T/u/v/ps to ERA5 reanalysis keeps meteorology ‘data-
aware’.  Nudging tendencies are considered to be part of the learned physics 

•  Store atmospheric and land-surface restart fields coarse-grained to 25 km every 15 min 



Improved diurnal cycle of precipitation over land 

200	km	resoluCon	
GCM	

3	km	SHiELD	



CorrecBng	model	errors	with	machine	learning	

•  Uncorrected coarse model: 

(𝜕𝑎↓𝑐 /𝜕𝑡 )↓0 =   𝐴↓𝑐  + 𝑄↓𝑎↑𝑝 ,                𝐴↓𝑐 =− 𝐮↓𝑐 ⋅∇𝑎↓𝑐  

•  Coarse model can include no physics (𝑄↓𝑎↑𝑝  = 0) or a subset of parameterized 
physical processes that help track the fine-grid model (e. g. turbulence, radiation, 
clouds, Cu parameterization). 

•  Machine-learn a state-dependent corrective source ∆𝑄↓𝑎  for the coarse model: 

  (𝜕𝑎/𝜕𝑡 )↓𝑐 = (𝜕𝑎↓𝑐 /𝜕𝑡 )↓0 +Δ𝑄↓𝑎 = 𝐴↓𝑐 + 𝑄↓𝑎↑𝑝 +Δ𝑄↓𝑎  

•  Apparent moistening: 𝑄↓2 = 𝑄↓𝑞↓𝑣 ↑𝑝 +Δ𝑄↓𝑞↓𝑣   



Coarse-resoluCon	model	iniCalized	from	each	
coarsened	high-resoluCon	snapshot	and	run	

forward	for	15	minutes,	with	a	1-minute	Cmestep.	
	

Low-res	tendencies	computed	from	final	minute.	

CorrecCng	source:	

Coarsened	state	of	fine-resoluCon	model	saved	every	15	minutes.	
Fine-res	tendencies	computed	from	these	snapshots.		

Δ𝑄↓𝑎 = 𝜕𝑎↓𝑓  /𝜕𝑡  − (𝜕𝑎↓𝑐 /𝜕𝑡 )↓0 

𝜕𝑎↓𝑓  /𝜕𝑡 	

(𝜕𝑎↓𝑐 /𝜕𝑡 )↓0 	

Tendency difference method for computing 
correcting source 



Baseline model physics 

We	run	ML	on	top	of	several	configuraCons	of	the	coarse-resoluCon	model:	

1.  physics-on	
•  All	physical	parameterizaCons	on		
					(land	surface,	boundary	layer,	convecCon,	radiaCon,	microphysics,	gravity	wave	drag)	

2.  clouds-off	
•  Deep	and	shallow	convecCon	schemes	off	
•  No	microphysics	
•  Use	clear-sky	radiaCon	only	

3.  physics-off	
•  Run	only	dynamical	core	



•  We	coarse-grain	to	obtain	
verCcal	profiles	and	apparent	
sources	of	T,	q,	etc.	

•  5	km	relief	within	a	coarse	cell	
•  Most	fields	are	much	more	
constant	along	a	pressure	
surface	than	along	a	terrain-
following	model	surface	

→	Coarse-grain	on	pressure	levels,	
not	model	levels	

	
	
	

Conceptual	issues	over	topography	
Consider	3	km	->	200	km		coarse-graining	over	the	Himalayas	




Training	set	=	1.7M	samples	(130	iniCalizaCons	x	13824	grid	points)	
Test	set	=	660K	samples	(48	iniCalizaCons	x	13824	grid	points)	
Train/test data  separated by split date to minimize correlated data across sets	
	



Random forest model	


•  Ensemble of 13 decision tree es:mators, each 

with max depth of 13 
•  Easier to run with stability in prognos:c 

simula:ons (rela:ve to neural nets)


Machine learning: model training 
 



Machine learning: diagnostic skill  
Column	integrals	of	the	ML-predicted	verCcal	profiles	reproduce	spaCal	features	of	
net	heaCng	and	precipitaCon,	while	also	smoothing	out	noise	from	coarse-graining	
and	iniCalizaCon.	
	

ML	model	predicCon	 Test	data	target	

ML	model	predicCon	 Test	data	target	

Net	ML-implied	precipitaBon	
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ML	model	trained	with	clouds-off	
configuraCon�	



2-day prognostic forecast of precipitation 

200	km	FV3GFS	with	deep	
convecCon	param	replaced	
by	ML	

3	km	simulaCon	averaged	to	
hourly	25	km	



Weather forecast test 

•  5-10 day ‘weather forecasts’ are an acknowledged test of 
global atmospheric model skill 

•  Goal is to match the evolution of the 3 km training model. 

•  Skill metric: root-mean-square error (RMSE) of map of column 
water vapor in 200 km model vs. coarsened 3 km model. 
Smaller is better. 

•  RMSE grows as coarse model diverges from training model.  

•  “Climate” skill metric:  minimal global-mean drift over 5 days 

•  Currently, the best model configuration includes all 
conventional physics parameterizations and no ML.   

•  Most (not all) ML runs to date crash between 5 and 10 days 

•  …but it’s early days, and we are working to improve ML skill.   



Alternative strategies for computing corrective 
sources 

High-resoluBon	physics	budget	
informaCon	+	eddy	flux	

convergence	
(like	Yuval	and	O’Gorman	2020)	

Nudging	coarse-model	
towards	the	high-res	

Tendency	difference	
method	(noisy)	

Snapshot	of	net	column-heaCng	in	training	dataset:	

TesCng	these	soon!	



Conclusions	and	Outlook	

•  VCM has developed a unique cloud-based workflow for training a ML 
correction to a coarse-resolution climate model based on fine-resolution 
GSRM simulations. 

•  We have trained stable ML schemes that can make skillful global rainfall 
forecasts over land and ocean for 10 days or longer given specified SST. 

•  Tendency-difference method is flexible but is degraded by vertical velocity 
transients 

•  Promising new approaches to improve training data quality 



Thank You!

hBps://vulcan.com/Our-Work/Climate/Climate-Modeling-aspx	



FV3GFS and SHiELD1 global weather/climate models 

•  FV3GFS: Open-source global atmosphere model used by NOAA for operational weather forecasts 
•  FV3 dycore – Customized D-grid finite volume method on cubed sphere. 
•  Nonhydrostatic by default, 80 vertical levels used here. 
•  Specified time-varying sea-surface temperature used here 
•  Horizontal grid resolutions:  

•  3 km (C3072)   No deep cumulus parameterization or gravity-wave drag 
•  13 km         Used for NCEP’s current operational global weather forecasts 
•  25 km                Finest grid currently practical for climate simulations of many decades 
•  200 km (C48)   Typical coarse climate model grid – good for prototyping or millennial runs. 

•  Physical parameterizations:  
•  Land surface and surface fluxes (NOAH) 
•  Radiation (RRTMG) 
•  Gravity-wave drag 
•  Boundary-layer (including shallow clouds) and shallow Cu (Han-Bretherton, Han-Pan) 
•  Cloud microphysics and subgrid variability (GFDL one-moment) 
•  Deep cumulus convection (SAS) 

1 GFDL’s SHiELD is FV3GFS with modest changes to cloud physics and advection and is not open-source. 



3	km	rainfall	bias	much	smaller	over	sub-Saharan	Africa	and	Himalayas	
Diurnal	cycle	of		precipitaCon	over	land	is	also	greatly	improved	in	SHiELD	

40 d mean precipitation bias over land: 3 km SHiELD vs. 
200 km FV3GFS 
 

(GPCP)	



Despite careful efforts of pressure-level coarse-graining, 
vertical velocity noise remains over topography 
 

VerBcal	velocity	in	upper	troposphere	(~250hPa)	

Averaged	over	348	iniCalizaCon	
Cmes	spanning	training	dataset.	

Fine	resoluCon	model	
coarsened	to	200km	

resoluCon	
These	results	are	from	clouds-off,	but	all	physics	configuraCons	give	comparable	results	


