Climate Informatics: Machine Learning for the study of Climate Change Claire Monteleoni #### Climate Informatics - 2011 First International Workshop on Climate Informatics - "Climate Informatics" book chapter [Monteleoni et al. 2013] - → In the first 5 years: participants from over 19 countries and 30 U.S. states - 2020 10th International Conference on Climate Informatics & 6th Climate Informatics Hackathon, September 23–26th Oxford/Virtual - → Abstract and Paper submission deadline is TODAY! ### Climate Change: Challenges for ML [Banerjee & Monteleoni, Invited Tutorial, NeurIPS, 2014] 1. Past: Paleo-climate reconstruction What was the climate before we had thermometers? 2. Local: Climate downscaling What climate can I expect in my own backyard? 3. Future: Climate model ensembles How to reduce uncertainty on future predictions? 4. Spatiotemporal: Space and time How to capture dependencies over space and time? 5. Tails/impacts: Extreme events What are extreme events and how will climate change affect them? 6. Other problems Data-rich playground with many opportunities for ML to have an impact! # Semi-supervised DL Avalanche detection # Unsupervised DL Temp. and precip. downscaling #### Fused DL Hurricane track forecasting # {Un, Self}-supervised DL • Temp. and precip. downscaling ### Unsupervised Deep Learning Supervised DL. Prediction loss is a function of the label, y, and the network's output on input x. | Network output | Loss function | | |--------------------|--------------------------|--| | $f_W(x) = \hat{y}$ | $\mathcal{L}(\hat{y},y)$ | | Unsupervised DL. Prediction loss is only a function of x, and the network's output on input x. There is no label, y. Network output Loss function $f_W(x) = \hat{x}$ $\mathcal{L}(\hat{x},x)$ ### Unsupervised DL for Downscaling - <u>Downscaling</u>: Classic problem in climate & meteorology - Goal: use coarse-scale spatiotemporal data to infer values at finer scales - Field of statistical downscaling, existing work: - Supervised learning methods - Provide point predictions - Generative downscaling is largely open ### Unsupervised DL for Downscaling - Cast downscaling as the ML task of domain alignment - Extend deep unsupervised <u>domain alignment</u> - AlignFlow [Grover et al., AAAI 2020] - Glow normalizing flow [Kingma & Dhariwal, NeurIPS 2018] - Self-supervision via geographic alignment of both domains - Obtain generative model for downscaling ## Downscaling: training data ERA: reanalysis data, 1° resolution; WRF: numerical weather model prediction, $\frac{1}{8}$ ° resolution #### Downscaling as domain alignment • <u>Domain alignment task</u>: given random variables X, Y, learn a mapping f: X \rightarrow Y such that, for any $x_i \in X$ and $y_i \in Y$, $f(x_i) \sim P_Y$ and $f^{-1}(y_i) \sim P_X$ - Downscaling as domain alignment - Learn the joint PDF over X and Y, by assuming conditional independence over a shared latent space Z $$P_{XY}(x,y) = \int_{z \in Z} P_{XYZ}(x,y,z) dz = \int_{z \in Z} P(x|z) P(y|z) P_Z(z) dz$$ - Model P(x|z), P(y|z) using AlignFlow [Grover et al. 2020] - Starting with a simple prior on P₇, learn a normalizing flow - No pairing between x and y examples needed! #### Normalizing Flows [Rezende & Mohamed, 2015] Learn a series of invertible transformations, $\{f_i\}$, from a simple prior on Z, to allow for more informative distributions on the latent space: $$z_k = f_k \circ f_{k-1} \circ \cdots \circ f_1(z_0)$$ #### ClimAlign architecture $f_X: \mathcal{Z} \leftrightarrow X$ - Architecture follows AlignFlow [Grover et al., 2020] - Normalizing flow: Glow [Kingma & Dhariwal, 2018] $f_Y: \mathcal{Z} \leftrightarrow Y$ #### Comparison with supervised benchmarks #### Temperature | Region | Method | RMSE | Bias | Corr | |--------|------------------|-----------------|-------------------|-----------------| | | BCSD | 1.51 ± 0.15 | -0.02 ± 0.21 | 0.93 ± 0.05 | | SE-US | BMD-CNN | 1.30 ± 0.12 | 0.03 ± 0.13 | 0.90 ± 0.05 | | | ClimAlign (ours) | 1.56 ± 0.13 | -0.005 ± 0.22 | 0.87 ± 0.06 | | P-NW | BCSD | 1.54 ± 0.23 | 0.01 ± 0.10 | 0.95 ± 0.03 | | | BMD-CNN | 1.25 ± 0.14 | -0.06 ± 0.05 | 0.93 ± 0.02 | | | ClimAlign (ours) | 1.58 ± 0.18 | 0.03 ± 0.15 | 0.89 ± 0.04 | #### Precipitation | Region | Method | RMSE | Bias | Corr | |--------|------------------|------------------|------------------|-----------------| | | BCSD | 27.32 ± 5.0 | 0.95 ± 1.4 | 0.39 ± 0.07 | | SE-US | BMD-CNN | 14.11 ± 2.18 | -0.23 ± 0.47 | 0.50 ± 0.10 | | | ClimAlign (ours) | 18.40 ± 2.64 | 0.08 ± 0.86 | 0.42 ± 0.07 | | P-NW | BCSD | 8.90 ± 2.30 | 0.41 ± 0.26 | 0.61 ± 0.06 | | | BMD-CNN | 5.77 ± 0.72 | -0.18 ± 0.61 | 0.70 ± 0.03 | | | ClimAlign (ours) | 7.33 ± 0.69 | 0.54 ± 0.54 | 0.67 ± 0.03 | ## Point prediction example ## Interpolation example #### Resources - Climate Informatics: www.climateinformatics.org - Community network, data, resources, events - 10th International **Conference** on Climate Informatics, September 2020, *Oxford/Virtual* ci2020.web.ox.ac.uk - 9th International Workshop on Climate Informatics, 2019, Paris sites.google.com/view/climateinformatics2019 - Climate Informatics Hackathon: storm intensity forecasting github.com/ramp-kits/storm_forecast