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October 2012: Hurricane Sandy — Reuters
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November 2019: Flooding, Venice, Italy: Reuters



Machine learning can shed light on climate change.
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Climate Informatics

2011  First International Workshop on Climate Informatics
2013  “Climate Informatics” book chapter [Monteleoni et al. 2013]
- In the first 5 years: participants from over 19 countries and 30 U.S. states

2020 10th International Conference on Climate Informatics &
6t Climate Informatics Hackathon, September 23—26™" Oxford/Virtual

— Abstract and Paper submission deadline is TODAY!



Climate Change: Challenges for ML

[Banerjee & Monteleoni, Invited Tutorial, NeurlPS, 2014]

1. Past: Paleo-climate reconstruction
What was the climate before we had thermometers?

2. Local: Climate downscaling
What climate can | expect in my own backyard?

3. Future: Climate model ensembles
How to reduce uncertainty on future predictions?
4. Spatiotemporal: Space and time
How to capture dependencies over space and time?

5. Tails/impacts: Extreme events
What are extreme events and how will climate change affect them?

6. Other problems

Data-rich playground with many opportunities for ML to have an impact!






wz... * lemp. and precip. downscaling




Unsupervised Deep Learning

e Supervised DL. Prediction loss is a function of the label,
y, and the network’s output on input x.

Network output Loss function

fw(z) =19 Ly, y)

* Unsupervised DL. Prediction loss is only a function of x,
and the network’s output on input x. There is no label, y.

Network output Loss function

fw(x) =2 L(z,x)



Unsupervised DL for Downscaling

[Brian Groenke, Masters Thesis, CU Boulder, May 2020]
with help from Luke Madaus, Jupiter Intelligence

 Downscaling: Classic problem in climate & meteorology

— Goal: use coarse-scale spatiotemporal data to infer values at finer
scales

* Field of statistical downscaling, existing work:
— Supervised learning methods
— Provide point predictions

* Generative downscaling is largely open



Unsupervised DL for Downscaling

[Brian Groenke, Masters Thesis, CU Boulder, May 2020]
with help from Luke Madaus, Jupiter Intelligence

e Cast downscaling as the ML task of domain alignment

* Extend deep unsupervised domain alignment
— AlignFlow [Grover et al., AAAI 2020]
— Glow normalizing flow [Kingma & Dhariwal, NeurlIPS 2018]
— Self-supervision via geographic alignment of both domains

* Obtain generative model for downscaling



Downscaling: training data

. o : . N .
ERA: reanalysis data, 1° resolution; WRF: numerical weather model prediction, 3 resolution

ERA-I, max temperature WRF-8, max temperature
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Downscaling as domain alignment

 Domain alignment task: given random variables X, Y, learn a
mapping f: X =2 Y such that, forany x, € Xand y, €Y,

f(z;) ~ Py and  f7(y,) ~ Px

* Downscaling as domain alignment

— Learn the joint PDF over X and Y, by assuming conditional
independence over a shared latent space Z

Pxy(z,y) = /

Pyy (. y, 2)dz = / P(x]2) P(y|2) Py (2)dz
z€Z

z€/4

— Model P(z|z), P(y|z) using AlignFlow [Grover et al. 2020]
— Starting with a simple prior on P,, learn a normalizing flow
— No pairing between x and y examples needed!



Unit Gaussian

Uniform

Normalizing Flows

Planar Radlal
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., [Rezende & Mohamed, 2015]

Learn a series of invertible transformations, {f;}, from a simple prior on Z,
to allow for more informative distributions on the latent space:

2k :fkofk—lo"'ofl(ZO)

xe X

L |

Flow

z ~ p(z)




e Architecture follows
AlignFlow [Grover et
al., 2020]

* Normalizing flow:

Glow [Kingma &

ClimAlign architecture

fX:Z(—)X

Dhariwal, 2018]

X
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Comparison with supervised benchmarks

Temperature
Region Method RMSE Bias Corr
BCSD 1.51 £ 0.15  -0.02 £ 0.21  0.93 + 0.05
SE-US BMD-CNN 1.30 £ 0.12  0.03 = 0.13 0.90 £+ 0.05
ClimAlign (ours) | 1.56 =+ 0.13 -0.005 + 0.22 0.87 + 0.06
BCSD 1.54 +£ 0.23  0.01 £ 0.10 0.95 + 0.03
P-NW BMD-CNN 1.25 £ 0.14  -0.06 £ 0.05  0.93 £ 0.02
ClimAlign (ours) | 1.58 &= 0.18  0.03 £ 0.15 0.89 + 0.04
Precipitation
Region Method RMSE Bias Corr
BCSD 27.32 £ 5.0 095+ 1.4  0.39 £ 0.07
SE-US BMD-CNN 14.11 + 2,18 -0.23 £ 047 0.50 £+ 0.10
ClimAlign (ours) | 18.40 +£2.64 0.08 £ 0.86 0.42 + 0.07
BCSD 890 £ 230 041 £0.26 0.61 £ 0.06
P-NW BMD-CNN 5.77 £ 0.72 -0.18 £ 0.61 0.70 £ 0.03
ClimAlign (ours) | 7.33 £ 0.69  0.54 £ 0.54  0.67 £+ 0.03




Point prediction example

ERA-I

Sample 1

WRF-4 Predicted




Interpolation example
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Resources | (CI |

Climate Informatics: wow.climateinformatics.org

— Community network, data, resources, events

10t" International Conference on Climate Informatics,
September 2020, Oxford/Virtual ci2020 .web.ox.ac.uk

9th |nternational Workshop on Climate Informatics, 2019,

Paris
sites.google.com/view/climateinformatics2019

Climate Informatics Hackathon: storm intensity forecasting

github.com/ramp-kits/storm forecast



http://www.climateinformatics.org
https://ci2020.web.ox.ac.uk/
https://sites.google.com/view/climateinformatics2019
https://github.com/ramp-kits/storm_forecast/blob/master/

