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Climate sensitivity
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Still substantial spread in model climate sensitivity 
global T=f(greenhouse gases):

Limits our climate mitigation and management capacity and increases cost 
Mostly due to representation of clouds

Radiation

Precipitation

Vegetation
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opinion & comment

COMMENTARY:

Climate goals and computing 
the future of clouds
Tapio Schneider, João Teixeira, Christopher S. Bretherton, Florent Brient, Kyle G. Pressel, Christoph Schär 
and A. Pier Siebesma

How clouds respond to warming remains the greatest source of uncertainty in climate projections. Improved 
computational and observational tools can reduce this uncertainty. Here we discuss the need for research 
focusing on high-resolution atmosphere models and the representation of clouds and turbulence within them.

In the 2015 Paris Agreement1, 
193 countries agreed to holding 
“the increase in the global average 

temperature to well below 2 °C above 
pre-industrial levels … to reduce the risks 
and impacts of climate change”. Currently, 
the carbon dioxide concentration in the 
atmosphere stands at 404 ppm. "is is 
120 ppm higher than in pre-industrial 
times, and Earth has already warmed 
1 °C since then2. How much higher can 
the concentration of CO2 and other 
greenhouse gases rise before the 2 °C 
threshold is crossed? "e answer to this 
crucial question is uncertain. Depending 
on which, if any, climate model one 
trusts, CO2 concentrations could reach 
between 470 and 600 ppm before the 2 °C 
warming threshold is crossed (Fig. 1a). 
Or, translated into time by assuming CO2 
concentrations continue to rise rapidly3, 
the 2 °C threshold may be crossed by the 
late 2030s, or much later at around 2060 
(Fig. 1a, right axis). Optimal emission 
pathways di#er vastly between allowable 
CO2 concentrations at the high or low end 
of this spectrum. 

A number of factors contribute to 
the spread of projections, including 
uncertainties about how much heat oceans 
take up and how anthropogenic aerosols 
a#ect climate. But the bulk of the spread 
can be traced to the equilibrium climate 
sensitivity, ECS (Fig. 1a). ECS is the global 
surface temperature increase that results 
a$er CO2 concentrations have doubled 
and the climate system has equilibrated to 
this one perturbation4. Because regional 
changes, for example in temperature or 
precipitation extremes, scale with global 
surface temperature5, ECS also measures 
how strongly rising CO2 concentrations 

impact regional climate. ECSs of current 
climate models are scattered between 2 and 
5 K. "is wide range of ECS has neither 
shi$ed nor narrowed substantially since 
the %rst comprehensive climate change 

assessment4,6 by the US National Academy 
of Sciences in 1979.

What lies behind the recalcitrant ECS 
uncertainty are primarily uncertainties 
about how clouds respond to warming, 
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Figure 1 | Dependence of climate goals on equilibrium climate sensitivity (ECS) and of ECS on low-cloud 
feedback. a, Allowable CO2 concentration before 2 °C warming threshold is crossed versus ECS. The 
bottom axes displays 1/ECS, the left axes the allowable CO2 concentration, and the right axes the year 
when the 2 °C threshold is crossed (correlation coe"cient r = 0.89). Each circle represents a climate 
model, numbered and coloured in order of increasing ECS (ref. 9). The horizontal axis is expressed as 
1/ECS because temperature changes ΔT and concentration changes ΔCO2 are to first order related by 
ΔT ∝ ECS × ΔCO2, so one expects ΔCO2 ∝ 1/ECS for fixed ΔT. The allowable CO2 concentration for 
each model is determined from a high-emission scenario simulation3 as the concentration when the 
5-year low-pass filtered global mean surface temperature rises 1.19 °C above the model’s average for 
2006–2015 (ref. 4). The 1.19 °C represents what remains of the 2 °C target because global mean surface 
temperatures2 have increased by 0.81 °C from 1861–1880 to 2006–2015. Allowable CO2 concentrations 
depend only weakly on the emission scenario considered (provided the 2 °C threshold is crossed in a 
scenario); however, the corresponding time when the 2 °C threshold is crossed (right axis) does depend 
on the emission scenario. Additional uncertainties would arise when one tries to convert allowable CO2 
concentrations into allowable emissions because it is uncertain how much of the emitted carbon dioxide 
will remain airborne. b, ECS versus changes in the amount of sunlight reflected by low clouds over 
tropical oceans9 (r = 0.73). A reduced reflection under warming (negative values) implies an amplifying 
feedback by tropical low clouds on the warming; an increased reflectance implies a damping feedback 
by tropical low clouds.
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Schneider, T., et al. (2017). Nature Climate Change

ECS = Equilibrium climate sensitivity (T response do CO2 doubling)
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Cloud impact is not just global but also regional
(also circulation feedback)

Regional climate projection is too uncertain

Radiation

Precipitation

Vegetation

Stevens, B., & Bony, S. (2013). Science

31 MAY 2013    VOL 340    SCIENCE    www.sciencemag.org 1054

PERSPECTIVES

Key Uncertainties

The increase in complexity has greatly 
expanded the scope of questions to which 
GCMs can be applied ( 5). Yet, it has had 
relatively little impact on key uncertainties 
that emerged in early studies with less com-
prehensive models ( 6). These uncertainties 
include the equilibrium climate sensitivity 
(that is, the global warming associated with 
a doubling of atmospheric carbon dioxide), 
arctic amplifi cation of temperature changes, 
and regional precipitation responses. Rather 
than reducing biases stemming from an 
inadequate representation of basic pro-
cesses, additional complexity has multiplied 
the ways in which these biases introduce 
uncertainties in climate simulations ( 7,  8).

For instance, a poor understanding of what 
controls the distribution of tropical precipita-
tion over land, and hence vegetation dynam-
ics, limits attempts to understand the carbon 
cycle ( 9). Similarly, uncertainties in arctic 
amplifi cation of warming hinder predictions 
of permafrost melting and resultant changes 
in soil biogeochemistry.

Although the drive to complexity has not 
reduced key uncertainties, it has addressed 
Smagorinsky’s question ( 2) as to what level 
of process detail is necessary to understand 
the general circulation. There is now ample 
evidence that an inadequate representation of 
clouds and moist convection, or more gener-
ally the coupling between atmospheric water 
and circulation, is the main limitation in cur-
rent representations of the climate system.

That this limitation constitutes a major 
roadblock to progress in climate science can 
be illustrated by simple numerical experi-

ments. In idealized simulations of a water-
world that neglect complex interactions 
among land surface, cryosphere, biosphere, 
and aerosol and chemical processes (see the 
fi gure), the key uncertainties associated with 
the response of clouds and precipitation to 
global warming are as large as they are in 
comprehensive Earth System Models ( 10).

Differences among the simulations in 
the fi gure are especially evident in the trop-
ics, where the sign of cloud changes and the 
spatial structure of the precipitation response 
differ fundamentally between models. This 
diversity of responses arises because, at low 
latitudes, the coupling between water and 
circulation is disproportionately dependent 
on the representation of unresolved pro-
cesses, such as moist convection and cloud 
formation ( 11,  12). The mid-latitudes show 
more robust responses because much of 
the energy transport is carried by baroclinic 
eddies; these, too, are fundamentally coupled 
to water, but they are much better described 
and resolved by modern GCMs, as foreseen 
by Smagorinsky ( 1).

The uncertain interplay between water 
and circulation that underlies differences in 
the response of the climate system to warm-
ing (see the fi gure) can be expressed in terms 
of more specifi c questions. For instance, how 
do marine boundary-layer clouds depend on 
their environment? Or how do atmospheric 
circulations couple to moist convection 
through surface and radiative fl uxes? The fi rst 
question ends up being key to explaining the 
intermodel spread in climate sensitivity ( 13, 
 14), the second to the pattern of the regional 
response to warming. Differences in regional 

responses also infl uence ocean circulations, 
and hence how oceans take up heat, as well as 
patterns of precipitation, and hence how the 
land biosphere takes up carbon.

Back to Basics

A deeper understanding and better represen-
tation of the coupling between water and cir-
culation, rather than a more expansive repre-
sentation of the Earth System, is thus neces-
sary to reduce the uncertainty in estimates of 
the climate sensitivity and to guide adapta-
tion to climate change at the regional level. 
This knowledge should help focus efforts 
and lead to progress in reducing the impreci-
sion of climate models in the next 50 years. 
Here, Numerical Weather Prediction (NWP) 
provides a good example. By focusing on 
key limitations in the model initialization, 
spatial resolution, and the representation 
of key parameterized processes, NWP has 
improved forecast skill substantially over 
the past 30 years ( 15).

It is time to draw lessons from the era of 
experimentation that Smagorinsky launched 
half a century ago, and focus climate model-
ing efforts on advancing understanding and 
improving the numerical representations of 
how clouds, moist convection, and heating 
couple to the general circulation. 
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Wide variation. The response patterns of clouds and precipitation to warming vary dramatically depending 
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Using ML for climate
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Randall, D. et al.. (2003)., Bulletin Of The American Meteorological Society, 

Parameterization: represent (physically or statistically) 
a physical process that cannot be resolved (e.g. clouds)

Typically physically based

with      coarse-scale average of 

However: it has failed for ~40 years (Randall et al. 2003)

This largely explains intermodal spread in climate projection

Ⓒ climate-dynamics.org
~100km

∂X
∂t |clouds

= f (X ) X X
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Using ML for climate

5 | ML4Earth

Parameterization: Difficulty

•Many orders of magnitude in scales: mm to 104 km

•Major numerical challenge for a long time to come 
(not just cloud resolving)

• How can we buy us time? and (hopefully) learn on the way?
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Using ML for climate
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Resolving scales in the atmosphere

• We can now resolve many processes

• Limited time and domain size + need subgrid scale (SGS) model

• How can we skip scales? Leap?
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Using ML for climate:  (deep) clouds

7 | ML4Earth Gentine P., Pritchard M., Rasp S., Reinaudi G., GRL, 2018
Rasp, Pritchard and Gentine, PNAS 2018

Brenowitz and Bretherton, GRL, 2018

How can we solve this issue?
Take advantage of cloud-resolving simulations 
(~1km, alleviate most biases but very expensive)

Not “physical” but
Data-driven approach
(informed by cloud-resolving simulations)

Deep Neural Net  or Convolutional NN

Cost function:
misfit to 

coarse-grained
high-res. 

model

Global “CRM”

Coarse graining

Temperature T (z)
Specific humidity q(z)

Surface sensible heat flux H
Surface evaporation E

Surface pressure Ps
Precipitation

∂T
∂t |convection
∂q
∂t |convection
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Using ML for climate:  (deep) clouds
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Coarse-grained
Cloud-resolving 

Model
(superparameterization)

Machine 
learning 

Coarse-resolution
model

10 times cheaper than original coarse model, 1000 less expensive than high-res model
Question: generalization to unforeseen conditions? Climate change

Gentine P., Pritchard M., Rasp S., Reinaudi G., GRL, 2018
Rasp, Pritchard and Gentine, PNAS 2018

Brenowitz and Bretherton, GRL, 2018
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Using ML for climate:  (deep) clouds
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Regular CAM 
parameterization

Gentine P., Pritchard M., Rasp S., Reinaudi G., GRL, 2018
Rasp, Pritchard and Gentine, PNAS 2018

Good hydrologic cycle

Interactive model

Now we have good 
boundary condition to 

study hydrology J
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Using ML for climate:  (deep) clouds

10 | ML4Earth Gentine P., Pritchard M., Rasp S., Reinaudi G., GRL, 2018
Rasp, Pritchard and Gentine, PNAS 2018

Spectra
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Using ML for climate:  (deep) clouds

11 | ML4Earth Gentine P., Pritchard M., Rasp S., Reinaudi G., GRL, 2018
Rasp, Pritchard and Gentine, PNAS 2018

Spectra
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Issues
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1. Physical Constraints 
Energy conservation
Mass conservation

Only approximate with ML

Gentine P., Pritchard M., Rasp S., Reinaudi G., GRL, 2018
Rasp, Pritchard and Gentine, PNAS 2018
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Issues
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2. Generalization
ML has mostly been about interpolations 

using lots of data, poor extrapolation

Gentine P., Pritchard M., Rasp S., Reinaudi G., GRL, 2018
Rasp, Pritchard and Gentine, PNAS 2018

Brenowitz and Bretherton, GRL, 2018
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Issues
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2. Generalization
ML has mostly been about interpolations 

using lots of data, poor extrapolation

Gentine P., Pritchard M., Rasp S., Reinaudi G., GRL, 2018
Rasp, Pritchard and Gentine, PNAS 2018

Brenowitz and Bretherton, GRL, 2018
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Issues
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2. Generalization
Interpolating works

Gentine P., Pritchard M., Rasp S., Reinaudi G., GRL, 2018
Rasp, Pritchard and Gentine, PNAS 2018

Brenowitz and Bretherton, GRL, 2018

Using both 0K 
and +4K
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Issues
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2. Generalization
Interpolating works

Gentine P., Pritchard M., Rasp S., Reinaudi G., GRL, 2018
Rasp, Pritchard and Gentine, PNAS 2018

Brenowitz and Bretherton, GRL, 2018

Using both 0K 
and +4K
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Summary of issues with brute force ML
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1. Do not respect physical laws
e.g. conservation of energy and mass

à strict requirement

2. Issue with out-of-sample generalization
Important for many climate applications

e.g. extremes, climate change

ML 
algorithm

input Within range 
prediction

ML 
algorithm

input Out-of-sample 
prediction ?
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Potential Overcoming Strategies

18 | ML4Earth For knowledge-driven see Yang… Gentine 2019 ERL, or Jia,…, Kumar 2018 ArXiv

Interpolation Extrapolation
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Constraining physics within ML
1. Convection

Energy and mass conservations 
Impose them within NN as function of inputs (x) and outputs (y):

2 equations: reduce NN degrees of freedom to n-2 degrees of freedom

Beucler, Pritchard, Rasp, Gentine, PRL, submitted

Hybrid approaches

Exact 
conservations

3

C. Linking Constraints to Performances

Intuitively, we expect NN’s performances to improve
once we enforce constraints in physical systems with few
degrees of freedom, while this may not hold true with
many degrees of freedom. We formalize the link between
constraints and performances by (1) decomposing the
NN’s prediction into the “truth” and error vectors fol-
lowing equation 4, and (2) remembering that constraints
exactly hold for the “truth”:

C


x

yNN

�
def
=

0z }| {

C


x

yTruth

�
+C


0

yErr

�
. (8)

Equation 8 relates how much constraints are violated
to the error vector. If we measure performance using
MSE, we may square each component of equation 8 to
relate (1) how much constraints are violated to (2) the
squared-error and (3) a residual cross-term:

8i,

✓
C


x

yNN
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(9)
In ACnets, we strictly enforce physical constraints, set-

ting the left-hand side of equation 9 to 0. As the squared-
error is positive-definite, the cross-term is always nega-
tive in ACnets. It is di�cult to predict the cross-term
before optimization, hence equation 9 does not provide
a-priori predictions of performance, even for ACnets. In-
stead, it relates how much a given NN violates constraints

...
...

...

x1

xm

y1

yp�n

yp�n+1

yp

Inputs fed to Constraints Layers

Standard NN Constraints Layers

Inputs Outputs
Direct Residual

FIG. 2. ACnet: Direct outputs are calculated using a stan-
dard NN, while the remaining outputs are calculated as resid-
uals from the constraints layers.

to the performance of related predictions: the more nega-
tive the cross-term, the worse the performance for a given
constraints violation.

III. APPLICATION

A. Convective Parametrization for Climate
Modeling

The representation of subgrid-scale processes in coarse-
scale, numerical models of the atmosphere, referred to as
subgrid parametrization, is a large source of error and
uncertainty [e.g., 16, 17]. Machine-learning algorithms
trained on fine-scale, numerical models can improve sub-
grid parametrizations by faithfully emulating the e↵ect of
fine-scale processes on coarse-scale dynamics [e.g., 18–21,
see section 2 of Rasp [22] for a detailed review]. None of
these parametrizations exactly conserve physical invari-
ants (e.g., mass, energy), which is problematic for long-
term climate projections, as the spurious energy produc-
tion may (1) exceed the projected radiative forcing and
(2) result in large thermodynamic drifts or biases over
a long time-period. Motivated by this shortcoming, we
build a NN parametrization of convection and clouds that
we constrain to conserve 4 invariants: energy, mass, long-
wave radiation, and shortwave radiation.

B. Model and Data

We use the Super-Parametrized Community Atmo-
sphere Model 3.0 [23] to simulate the climate for two
years in aquaplanet configuration [24], where the surface
temperatures are fixed with a realistic equator-to-pole
gradient [25]. Following [19]’s sensitivity tests, we work
in a data-rich regime by using 42M samples from the
simulation’s first year to train the NN and 42M samples
from the simulation’s second year to validate the NN. To
test the NN’s ability to generalize outside of their train-
ing set, we use 42M samples from a simulation in which
the surface temperature has been uniformly warmed by
4K, a proxy for the e↵ects of climate change.

C. Formulating the Conservation Laws in a Neural
Network

The parametrization’s goal is predicting the rate at
which convection changes the local climate based on the
climate’s current state. We group all variables describing
the local climate in an input vector x of size 304 (10
vertical profiles with 30 levels, followed by 4 scalars):

x =
⇥
(qv, ql, qi,T ,v,LS, ps, S0) SHF LHF

⇤T
. (10)

We then concatenate the time-tendencies from convec-
tion and the additional variables involved in the conser-
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Warm climate +8K generalization experiment

Beucler, Pritchard, Rasp, Gentine, in preparation

Generalization

Truth
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Warm climate +8K generalization experiment
Pure ML (deep NN)

Beucler, Pritchard, Rasp, Gentine, in preparation

Generalization

Truth
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Use physical knowledge

Beucler, Pritchard, Rasp, Gentine, in preparation

Generalization

Truth
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Use physical knowledge

Beucler, Pritchard, Rasp, Gentine, in preparation

Generalization

Truth
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Using physical knowledge – … – output flux rescaling
Further improvements 

Beucler, Pritchard, Rasp, Gentine, in preparation

Hybrid approaches

Truth
Truth Brute Force

Constrained physics 
+ improved 

generalization J
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Machine learning is an appealing approach 
for subgrid parameterizations

Working example
Deep clouds (convection)

Issues: 
1. Conservations, physical invariances, physical laws

2. Generalization 

Solution:
Hybrid physical+ML approaches appear 

as powerful tool to tackle this

Conclusions
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THANK YOU

Questions?

pg2328@columbia.edu

@PierreGentine
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A hope

4 

superior observational products for the atmosphere (clouds and convection) and land (gridded carbon and 
water fluxes, soil moisture, and biomass), and to enhance data processing of climate model output via ML. 
LEAP will synergistically use these new land and atmosphere observational products for model evaluation 
(Section B6). Kumar completed an NSF Expeditions in Computing grant developing ML for climate and 
ecosystem data (climate model output, remote sensing, and in situ), refining local climate change impact. 
This project focused upon analyzing ESM outputs and data, not LEAP’s focus of exploring ML-enhanced 
ESMs climate projections. Nevertheless, LEAP will leverage this Expeditions’ ideas and momentum. 
 
B. DESCRIPTION OF THE RESEARCH OBJECTIVES OF THE CENTER. 
B1. Earth System Modeling and the Parameterization Deadlock. Today’s climate models, called Earth 
System Models (ESMs), simulate physical and biogeochemical processes in the atmosphere, ocean, land, 
and cryosphere to replicate historical and project future climates. ESMs solve thousands of equations, in-
volving thousands of parameters. Climate projection simulations are typically run on a coarse spatial grid 

(~100 km horizontal resolution, 
Figure 3) due to the limited compu-
tational capacity of present-day 
high-performance computing sys-
tems. Biological and physical pro-
cesses occurring at scales smaller 
than the grid resolution are empiri-
cally represented using “parame-
terizations”: mathematical repre-
sentations of processes’ impact on 
the coarse scale (e.g., heating due 
to subgrid clouds), based upon 
equations with adjustable free pa-
rameters (e.g., a diffusion equation 
with a diffusion coefficient parame-
ter).  
 
Internal climate variability notwith-
standing (Figure 1), near-term (10-
40 year) climate projection uncer-
tainties are primarily due to two pa-
rameterization errors [17]: 

 
1. Structural Errors stemming from poor or missing representation of small-scale subgrid processes 

within the coarse ESM resolution (e.g., clouds, convection, turbulence) [20] or from incomplete scientific 
knowledge of these processes (e.g., land and ocean biology, ice flow). 

2. Model Parameter Errors: ESM parameters are calibrated to achieve simulations that reasonably rep-
licate observations, but this calibration step, called “model tuning,” is insufficiently automated and 
leverages only a small subset of available data.  

 
ESM developers compare model results against historical observations to evaluate and revise model struc-
ture and parameters (Figure 2). ESM subcomponents (atmosphere, ocean, etc.) are first run independently 
and evaluated against observations. Then adjustments to structures and parameters are made to improve 
comparisons with data, iterating until the model is considered adequate. Subcomponents are then coupled 
together, run again, and re-tuned to address new discrepancies. This cumbersome and labor-intensive 
process requires deep geoscientific and modeling expertise, but the resulting outputs still exhibit high biases 
(e.g., clouds [13,18,19], convection [20,21], and ocean eddies [22,23]) due to flawed model structures that 
cannot be corrected by parameter tuning alone [24]. This long-standing “parameterization deadlock” has 
impeded ESM climate projection for too long [18]. 
 
B2. Critical Proofs of Concept. 
B2.1. ML for Earth System Modeling. 
LEAP’s team has pioneered using ML to: 1) improve ESM model structure; 2) estimate model parameters; 
and 3) develop new data products constraining key processes. Atmospheric convection is a long-standing 

Figure 3: Today’s ESMs (left) represent key climate processes such 
as clouds only coarsely (~100km resolution). LEAP will use ML to 
better represent climate effects of these and other small-scale pro-
cesses (right). LEAP’s goal is to achieve climate modeling with a 
quality equivalent or superior to high-resolution simulations. 


