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Climate sensitivity

Still substantial spread in model climate sensitivity
global T=f(greenhouse gases):
Limits our climate mitigation and management capacity and increases cost
Mostly due to representation of clouds

Amplifying Damping
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1/ECS (K™ Low-cloud reflectance change (% K™)

ECS = Equilibrium climate sensitivity (T response do CO, doubling)
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Regional climate sensitivity

Cloud impact is not just global but also regional

(also circulation feedback)
CHANGE IN CLOUD RADIATIVE EFFECTS
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Regional climate projection is too uncertain
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Using ML for climate

Parameterization: represent (physically or statistically)
a physical process that cannot be resolved (e.g. clouds)
Typically physically based

Ba_X = f( X ) witl" coarse-scale average of X
4 Iclouds

However: it has failed for ~40 years (rRandall et al. 2003)
This largely explains intermodal spread in climate projection
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Using ML for climate

Parameterization: Difficulty

* Many orders of magnitude in scales: mm to 10*km

mm m km 1(54 km

* Major numerical challenge for a long time to come
(not just cloud resolving)

* How can we buy us time? and (hopefully) learn on the way?
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Using ML for climate

Resolving scales in the atmosphere
* We can now resolve many processes

* Limited time and domain size + need subgrid scale (SGS) model

* How can we skip scales? Leap?
[ P P

years
SGS

o

SGS 104 km

S
mm m km
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Using ML for climate: (deep) clouds

How can we solve this issue?
Take advantage of cloud-resolving simulations
(~1km, alleviate most biases but very expensive)

Global “CRM”

Not “physical” but
Data-driven approach

L
'
(informed by cloud-resolving simulations) " .

Temperature 7 (z)E
Specific humidity g(z)

T

0 Cost function:
! |convection

Surface sensible heat flux H _ misfit to
. — aq coarse-grained
Surface evaporation E | —1 high-res.
at |convection model

Surface pressure P 8
Precipitation

@ Input Layer (@ Hidden Layer @ Output Layer
Deep Neural Net or Convolutional NN
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Using ML for climate: (deep) clouds

Day: 0 - Hour: 0.0
SPCAM PREC SPCAM OLR
Coarse-grained
Cloud-resolving L
Model y

-
(superparameterization)
CLOUDBRAIN PREC §
Machine
learning . e
Coarse-resolution e T, .
-~
model

Difference PREC Difference OLR

Wim?

10 times cheaper than original coarse model, 1000 less expensive than high-res model
Question: generalization to unforeseen conditions? Climate change
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Using ML for climate: (deep) clouds

m—= SPCAM
== NNCAM
=== CTRLCAM

Regular CAM
parameterization
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Now we have good
boundary condition to
study hydrology ©

50 100 150 200 250
Precipitation [mm d~1]

Good hydrologic cycle
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Using ML for climate: (deep) clouds

Spectra
CTRLCAM
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Using ML for climate: (deep) clouds

Spectra G
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Issues

1. Physical Constraints
Energy conservation
Mass conservation

Only approximate with ML

250

2 4 6 o3
ATphydp - SHF - D Frag [W m?]

Gentine P., Pritchard M., Rasp S., Reinaudi G., GRL, 2018
Rasp, Pritchard and Gentine, PNAS 2018
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Pressure [hPa]
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Issues

2. Generalization
ML has mostly been about interpolations
using lots of data, poor extrapolation

SPCAM

equatorial | poleward,
contraction| upward
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Latitude Latitude Latitude Latitude Latitude

-60-30 0 30 60

Latitude

Gentine P., Pritchard M., Rasp S., Reinaudi G., GRL, 2018
Rasp, Pritchard and Gentine, PNAS 2018
Brenowitz and Bretherton, GRL, 2018
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Issues

2. Generalization
ML has mostly been about interpolations
using lots of data, poor extrapolation

SPCAM

equatorial | poleward,
contraction| upward
0
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Using both OK
and +4K
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Pressure [hPa]
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Issues

2. Generalization
Interpolating works

SPCAM

[ IR
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Gentine P., Pritchard M., Rasp S., Reinaudi G., GRL, 2018
Rasp, Pritchard and Gentine, PNAS 2018
Brenowitz and Bretherton, GRL, 2018
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Issues

2. Generalization
Interpolating works
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Summary of issues with brute force ML

1. Do not respect physical laws
e.g. conservation of energy and mass
—> strict requirement

2. Issue with out-of-sample generalization
Important for many climate applications
e.g. extremes, climate change

input ML | Within range J
algorithm prediction

ML | Out-of-sample 5
algorithm prediction .

input —
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Potential Overcoming Strategies

Use of data

Data-driven ML Hybrid Knowledge-Driven

Interpolation Extrapolation

Data Rich Moderate Data Data Poor

Use of domain knowledge
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Hybrid approaches

Constraining physics within ML
1. Convection
Energy and mass conservations
Impose them within NN as function of inputs (x) and outputs (y):

—— Outputs ——
Direct Resi
—

Inputs fed to Constraints Layers

P
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Generalization

Warm climate +8K generalization experiment

Moistening (W m~?2) Heating (W m~?)
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Generalization

Warm climate +8K generalization experiment
Pure ML (deep NN)

Moistening (W m~?2) Heating (W m~?)
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Generalization

Use physical knowledge

Partial water vapor pressure (z)

Relative humidity (z) = = :
Saturation water vapor pressure (1. p)

Moistening (W m~2) Heating (W m~2)

O - Brute Force

200 - Rel Humidity
= Truth
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Generalization

Use physical knowledge

Partial water vapor pressure (z)

Relative humidity (z) = = :
Saturation water vapor pressure (1. p)

Moistening (W m~2) Heating (W m~2)

O - Brute Force

200 - Rel Humidity
= Truth
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Hybrid approaches

Using physical knowledge - ... — output flux rescaling
Further improvements

Moistening (W m~?2) Heating (W m™?)

= " minus surf.T
PW Scaled

= Truth Constrained physics

+ improved
generalization ©
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Conclusions

Machine learning is an appealing approach
for subgrid parameterizations

Working example
Deep clouds (convection)

Issues:
1. Conservations, physical invariances, physical laws
2. Generalization

Solution:
Hybrid physical+ML approaches appear
as powerful tool to tackle this
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THANK YOU
Questions?
pg2328@columbia.edu

YW @PierreGentine
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