
Beyond MPI+X

Prof. Simon McIntosh-Smith
Head of the HPC research group
University of Bristol, UK

Twitter: @simonmcs
Email: simonm@cs.bris.ac.uk

http://uob-hpc.github.io

Challenge: the diverse growth of parallelism

The coming generation of Exascale systems will
include a diverse range of architectures at massive
scale:

• Fugaku: Fujitsu A64FX Arm CPUs
• Perlmutter: AMD EYPC CPUs and NVIDIA GPUs
• Frontier: AMD EPYC CPUs and Radeon GPUs
• Aurora: Intel Xeon CPUs and Xe GPUs
• El Capitan: AMD EPYC CPUs and Radeon GPUs

http://uob-hpc.github.io
The Next Platform, Jan 13th 2020: “HPC in 2020: compute engine diversity gets real”
https://www.nextplatform.com/2020/01/13/hpc-in-2020-compute-engine-diversity-gets-real/

June 22, 2020 1

Overview
The Fugaku compute system was designed and built by Fujitsu and RIKEN. Fugaku 富岳, is
another name for Mount Fuji, created by combining the first character of 富士, Fuji, and 岳,
mountain. The system is installed at the RIKEN Center for Computational Science (R-CCS) in
Kobe, Japan. RIKEN is a large scientific research institute in Japan with about 3,000 scientists in
seven campuses across Japan. Development for Fugaku hardware started in 2014 as the
successor to the K computer. The K Computer mainly focused on basic science and simulations
and modernized the Japanese supercomputer to be massively parallel. The Fugaku system is
designed to have a continuum of applications ranging from basic science to Society 5.0, an
initiative to create a new social scheme and economic model by fully incorporating the
technological innovations of the fourth industrial revolution. The relation to the Mount Fuji
image is to have a broad base of applications and capacity for simulation, data science, and AI—
with academic, industry, and cloud startups—along with a high peak performance on large-scale
applications.

Figure 1. Fugaku System as installed in RIKEN R-CCS

The Fugaku system is built on the A64FX ARM v8.2-A, which uses Scalable Vector Extension
(SVE) instructions and a 512-bit implementation. The Fugaku system adds the following Fujitsu
extensions: hardware barrier, sector cache, prefetch, and the 48/52 core CPU. It is optimized for
high-performance computing (HPC) with an extremely high bandwidth 3D stacked memory, 4x
8 GB HBM with 1024 GB/s, on-die Tofu-D network BW (~400 Gbps), high SVE FLOP/s (3.072
TFLOP/s), and various AI support (FP16, INT8, etc.). The A64FX processor provides for
general purpose Linux, Windows, and other cloud systems. Simply put, Fugaku is the largest and
fastest supercomputer built to date. Below is further breakdown of the hardware.

• Caches:
o L1D/core: 64 KB, 4way, 256 GB/s (load), 128 GB/s (store)
o L2/CMG: 8 MB, 16 way
o L2/node: 4 TB/s (load), 2 TB/s (store)
o L2/core: 128 GB/s (load), 64 GB/s (store)

• 158,976 nodes

https://www.nextplatform.com/2020/01/13/hpc-in-2020-compute-engine-diversity-gets-real/

Three of the big issues facing parallel programming
1. Massive parallelism
• Fugaku has over 7.63 million cores, each with 2x 512-bit wide vectors

2. Heterogeneity
• CPUs and GPUs, both from multiple vendors
• Intel, AMD, NVIDIA, Fujitsu, Marvell, IBM, Amazon, …

• Non traditional architectures
• Graphcore IPUs, Google TPUs, FPGAs, …

3. Complex memory hierarchies

http://uob-hpc.github.io

So is there anything beyond “MPI+X” ?
Let’s face it, MPI+X is going to be the most widely used
programming model for scientific applications at Exascale
• It can be made to work
• We don’t have to throw everything away
• MPI continues to evolve and can directly target GPUs
• The choices for “X” are becoming increasingly attractive:
• OpenMP widely used and now also supports GPUs
• Various dialects of parallel C++ are maturing:
• SYCL/DPC++, Kokkos/RAJA, …

http://uob-hpc.github.io

But what else is there?
There are a few alternatives to MPI+X whose time might be right:

1. Partitioned Global Address Space (PGAS) languages
• E.g. Chapel, Unified Parallel C (UPC), Coarray Fortran, …

2. Julia
• In 2017 the Celeste project used Julia to achieve “peak performance of 1.54

PFLOP/s using 1.3 million threads” on 9,300 Knights Landing (KNL) nodes of the
Cori II (Cray XC40) supercomputer (then 6th fastest system in the world)

3. And a few more exotic options:
• Rust
• Go
• …

http://uob-hpc.github.io

Who is using what?
Based on how often language tutorials are searched on Google:

http://uob-hpc.github.io

Source: http://pypl.github.io/PYPL.html

(Notice no Fortran!)

http://pypl.github.io/PYPL.html

But what about in HPC?
Data on language usage from the UK’s national supercomputer
service, ARCHER:

http://uob-hpc.github.io

55.8%

12.6%

9.6%

0.2%

21.8%

Fortran C++ C Python Unidentfied
Fraction of node hours over 1 year from May 2019 to April 2020

100% MPI
(up to 18% MPI+OMP)

Beyond MPI+X in the USA’s ECP program

8 programming model and run-time projects funded in ECP:
• Two focus on MPI at Exascale (MPICH, OpenMPI)
• Two focus on task-level parallelism approaches (Legion, PaRSEC)
• One focuses on PGAS approaches (UPC++, GASNet)
• One focuses on parallel C++ (Kokkos, RAJA)
• Two focus on low-level on-node parallelism (ARGO, SICM)

http://uob-hpc.github.io

Source: https://www.exascaleproject.org/research-group/programming-models-runtimes/

https://www.exascaleproject.org/research-group/programming-models-runtimes/

Challenges for beyond MPI+X approaches
• Scalability
• Parallelism at the data, instruction, thread, core, socket, node, system, …

• Portability
• Across CPUs, GPUs, different vendors, compilers, …

• Performance portability
• Adapt to the best machine(s) available at the time

• Many other issues too:
• Ease of use, availability, fault tolerance, longevity, …

http://uob-hpc.github.io

Key takeaways for scientific software developers
• Orders of magnitude more parallelism at Exascale, ≥ O(109)
• Increased heterogeneity (CPU+X)
• MPI+X likely to remain the most widespread solution
• If starting from scratch, worth evaluating some of the alternatives
• Julia, parallel task frameworks etc.

Exascale is not “business as usual”!

http://uob-hpc.github.io

For more information

Bristol HPC group: https://uob-hpc.github.io/

Email: S.McIntosh-Smith@bristol.ac.uk

Twitter: @simonmcs

http://uob-hpc.github.io 11

https://uob-hpc.github.io/
http://bristol.ac.uk

• High Performance in silico Virtual Drug Screening on Many-Core Processors
S. McIntosh-Smith, J. Price, R.B. Sessions, A.A. Ibarra, IJHPCA 2014

• On the performance portability of structured grid codes on many-core computer architectures
S.N. McIntosh-Smith, M. Boulton, D. Curran, & J.R. Price
ISC, Leipzig, June 2014. DOI: 10.1007/978-3-319-07518-1_4

• Assessing the Performance Portability of Modern Parallel Programming Models using TeaLeaf
Martineau, M., McIntosh-Smith, S. & Gaudin, W.
Concurrency and Computation: Practice and Experience (Apr 2016)

• GPU-STREAM v2.0: Benchmarking the achievable memory bandwidth of many-core processors
across diverse parallel programming models
Deakin, T. J., Price, J., Martineau, M. J. & McIntosh-Smith, S. N.
First International Workshop on Performance Portable Programming Models for Accelerators
(P3MA), ISC 2016

• The Productivity, Portability and Performance of OpenMP 4.5 for Scientific Applications
Targeting Intel CPUs, IBM CPUs, and NVIDIA GPUs
M. Martineau and S. McIntosh-Smith, IWOMP 2017, Stony Brook, USA.

http://uob-hpc.github.io 12

• Evaluating Attainable Memory Bandwidth of Parallel Programming Models via BabelStream
Deakin, T, Price, J, Martineau, M, and McIntosh-Smith, S
International Journal of Computational Science and Engineering (special issue), vol 17., 2018

• Pragmatic Performance Portability with OpenMP 4.x
Martineau, Matt, Price, James, McIntosh-Smith, Simon, and Gaudin, Wayne
Proceedings of the 12th International Workshop on OpenMP, 2016

• Performance Analysis and Optimization of Clang’s OpenMP 4.5 GPU Support
Martineau, Matt, McIntosh-Smith, Simon, Bertolli, Carlo, et al
Proceedings of the International Workshop on Performance Modeling, Benchmarking
and Simulation of High Performance Computer Systems (PMBS), 2016, SC’16

• Exploiting auto-tuning to analyze and improve performance portability on many-
core architectures
Price, J. & McIntosh-Smith, S., P^3MA, ISC High Performance 2017 International Workshops,
Revised Selected Papers. Springer, Cham, p.538-556, vol. 10524 LNCS

• Performance Portability across Diverse Computer Architectures
T. Deakin, S. McIntosh-Smith et al., 2019 IEEE/ACM International Workshop on Performance,
Portability and Productivity in HPC (P3HPC), Denver, CO, USA, 2019, pp. 1-13

http://uob-hpc.github.io 13

