High-Perfomance Data Analytics in eScience and the Ophidia Framework

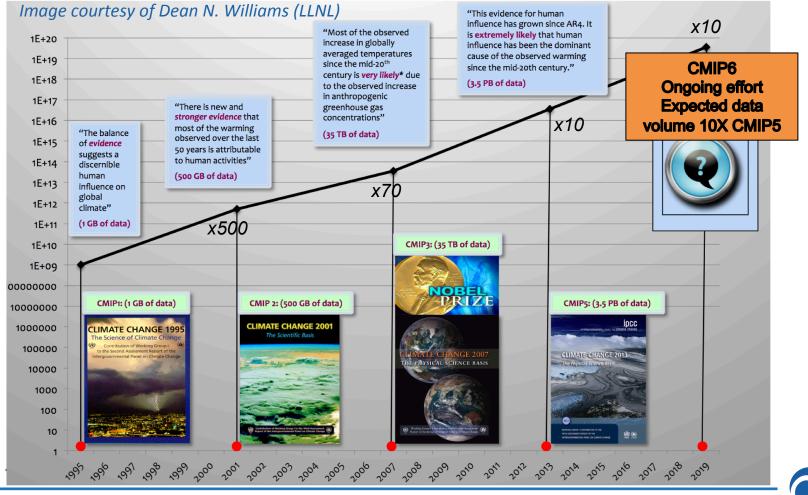
D. Elia^{1,2}, F. Antonio¹

¹ Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Lecce, Italy ² University of Salento, Lecce, Italy

ESiWACE2 online training course on High-Performance Data Analytics and Visualisation

1st session 6 October 2020

- ✓ Introduction data challenges in eScience and HPDA
- ✓ Introduction to the Ophidia HPDA Framework
- ✓ Ophidia core concepts: architecture, data model, operators and primitives
- ✓ Ophidia Python bindings: PyOphidia
- ✓ DEMO: Introduction to PyOphidia
- ✓ HANDS-ON: Data analytics examples with PyOphidia


Climate analysis challenges & issues

Several key challenges and practical issues related to large-scale climate analysis

- Setup of a data analysis experiment requires the *download of (multiple) input data*
 - Data download is a big barrier for climate scientists
 - o Reducing data movement is essential
- The complexity of the analysis leads to the need for *end-to-end workflow support*
 - o Data analysis mainly performed using client-side approaches
 - Analysing large datasets involves running tens/hundreds of analytics operators
- Large data volumes pose strong requirements in terms of computational and storage resources

CMIP data evolution

CENTRE OF EXCELENCE IN SIMULATION OF WEATHER AND CUNKIE IN ENDOFE

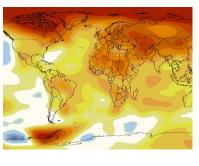
Convergence of data analytics and HPC in eScience

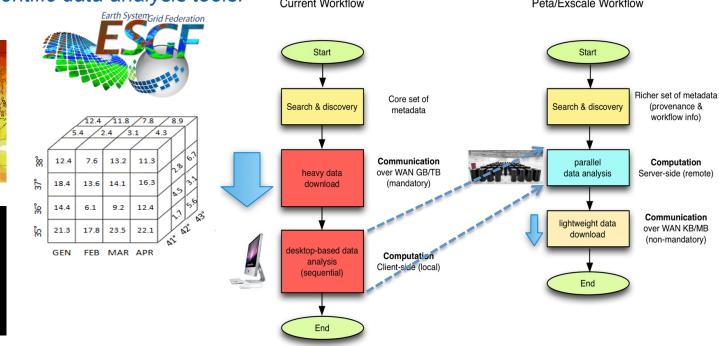
- (Big) Data analytics ecosystem has rapidly expanded in the last 15 years, leading to a wide spectrum of new solutions, mainly outside the scientific and engineering community
- HPC solutions have been used for several years in different scientific fields for scientific computing (simulations and modeling)
- Computational science modeling and data analytics are both crucial in scientific research
- The convergence of the solutions and technology of the two ecosystems is a key factor for accelerating scientific discovery

High-Performance Data Analytics (HPDA)

Ophidia High-Performance Data Analytics Framework

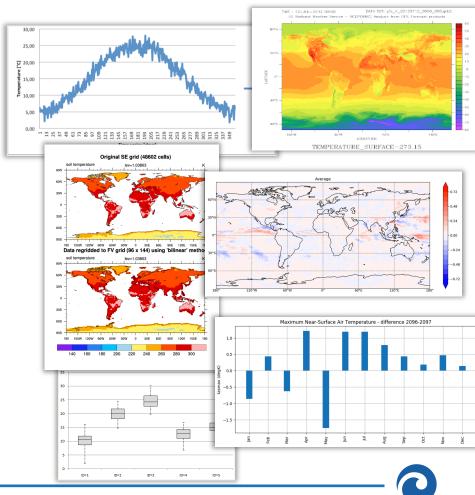
Ophidia (http://ophidia.cmcc.it) is a CMCC Foundation research project addressing data challenges for eScience


- a High-Performance Data Analytics (HPDA) framework for multi-dimensional scientific data joining HPC paradigms with scientific data analytics approaches
- in-memory and server-side data analysis exploiting parallel computing techniques and database approaches
- a multi-dimensional, array-based, storage model and partitioning schema for scientific data leveraging the datacube abstraction
- end-to-end mechanisms to support complex experiments and large workflows on scientific datacubes, primarily in climate domain

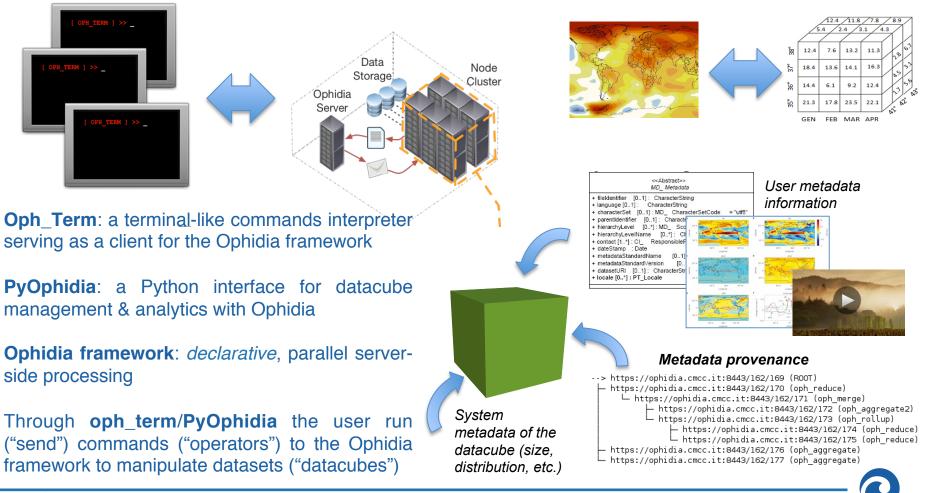


A paradigm shift

Volume, variety, velocity are key challenges for big data in general and for climate change science in particular. Client-side, sequential and disk-based workflows are three limiting factors for the current scientific data analysis tools.


S. Fiore, A. D'Anca, C. Palazzo, I. Foster, D. N. Williams, G. Aloisio, "Ophidia: toward bigdata analytics for eScience", ICCS2013 Conference, Procedia Elsevier, Barcelona, June 5-7, 2013

Data analytics requirements and use cases


Requirements and needs focus on:

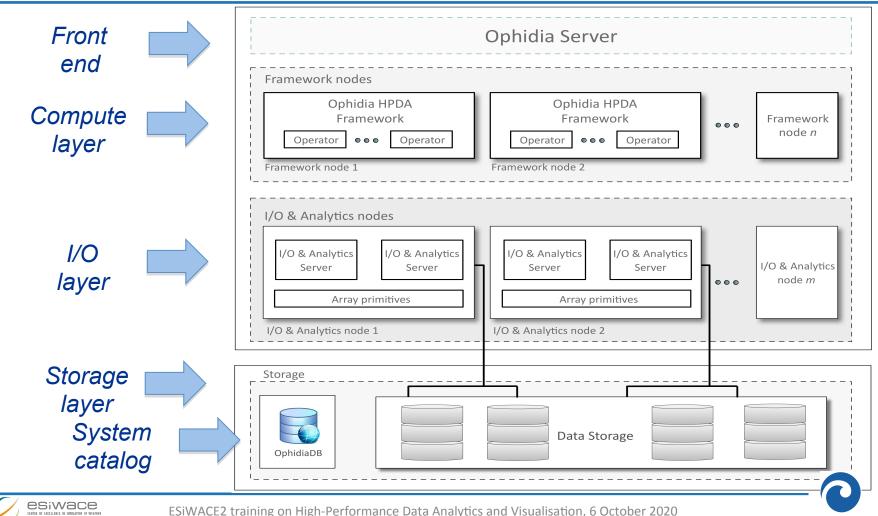
- Time series analysis
- Data subsetting
- Model intercomparison
- Multi-model means
- Massive data reduction
- Data transformation
- > Parameter sweep experiments
- Maps generation
- > Ensemble analysis
- Data analytics workflow support

Server-side paradigm and the datacube abstraction

Some international projects exploiting Ophidia

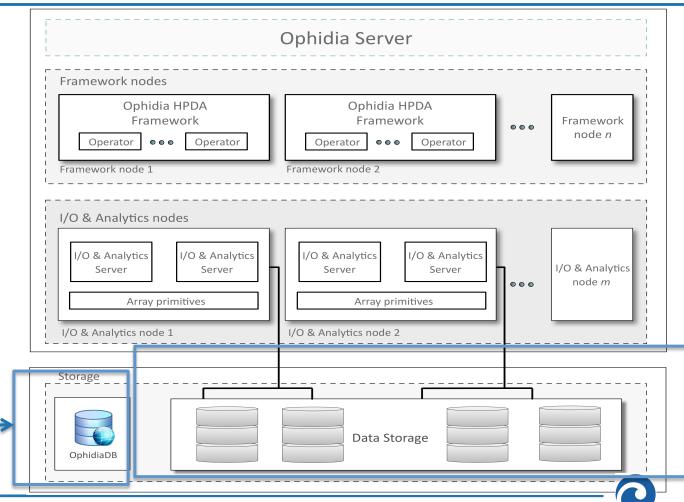
EUROPE - BRAZIL COLLABORATION OF BIG DATA SCIENTIFIC RESEARCH THROUGH CLOUD-CENTRIC APPLICATIONS

Climate Information Portal

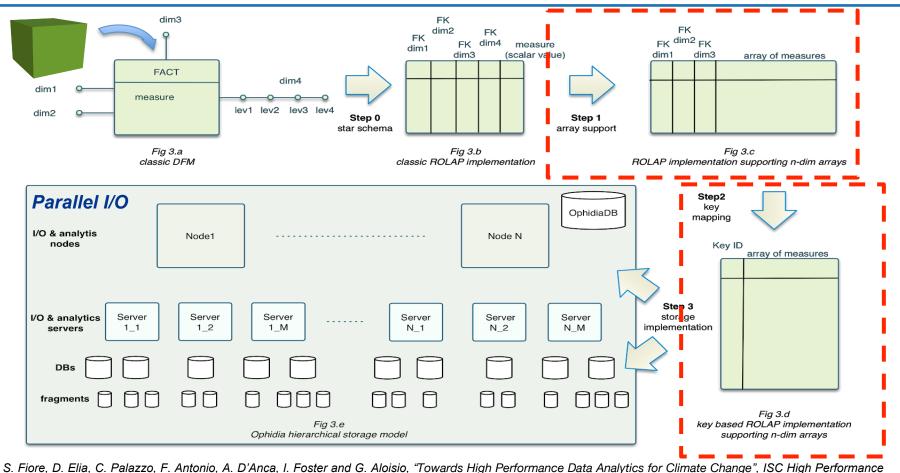

Gofidia

Ophidia architecture: overview

Ophidia architecture: storage layer


Distributed hardware resources to manage storage

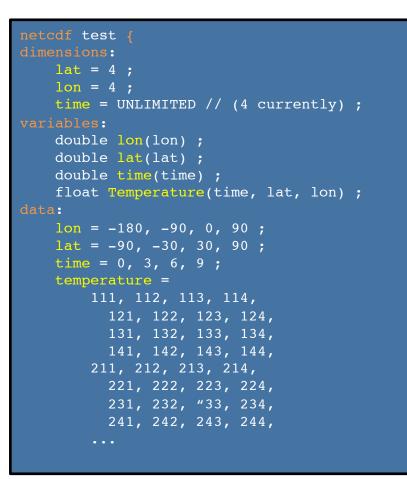
Data partitioned in a hierarchical fashion over the storage according to the storage model & partitioning schema

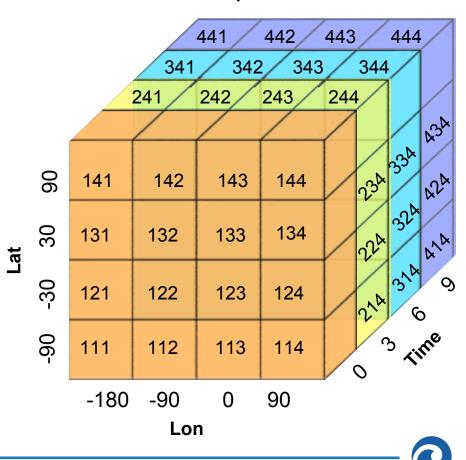

OphidiaDB is the system catalog: maps data fragmentation and tracks metadata

esiwace

CENTRE OF EXCELLENCE IN SIMULATION OF WEATHER

Multi-dimensional storage model implementation




2019. Lecture Notes in Computer Science, vol. 11887, pp. 240-257, 2019.

esiwace

CENTRE OF EXCELLENCE IN SIMULATION OF WEATHER

From NetCDF to datacube

Temperature

CENTRE OF EXCELLENCE IN SIMULATION OF WEATHER AND CLIMATE IN ENDIDIE

<pre>netcdf test {</pre>
dimensions:
lat = 4 ;
lon = 4;
<pre>time = UNLIMITED // (4 currently) ;</pre>
variables:
double lon(lon) ;
<pre>double lat(lat) ;</pre>
<pre>double time(time) ;</pre>
<pre>float Temperature(time, lat, lon) ;</pre>
data:
lon = -180, -90, 0, 90;
<u>lat = -90, -30, 30,</u> 90 ;
time = 0, 3, 6, 9 ;
temperature =
111, 112, 113, 114,
121, 122, 123, 124,
131, 132, 133, 134,
141, 142, 143, 144,
211, 212, 213, 214,
221, 222, 223, 224,
231, 232, 233, 234,
241, 242, 243, 244,
311, 312, 313, 314,
•••

NetCDF

5								
		Temperature						
lat	lon	time[0]	time[1]	time[2]	time[3]			
-90	-180	111	211	311	411			
-90	-90	112	212	312	412			
-90	0	113	213	313	413			
-90	90	114	214	314	414			
-30	-180	121	221	321	421			
-30	-90	122	222	322	422			
-30	0	123	223	323	423			
-30	90	124	224	324	424			
30	-180	131	231	331	431			
30	-90	132	232	332	432			
30	0	133	233	333	433			
30	90	134	234	334	434			
90	-180	141	241	341	441			
90	-90	142	242	342	442			
90	0	143	243	343	443			
90	90	144	244	344	444			

Ophidia

CENTE OF EXELLENCE IN SIMULATION OF WEATHER ADD CUMENT IN REINDE

<pre>netcdf test {</pre>
dimensions:
lat = 4;
lon = 4 ;
<pre>time = UNLIMITED // (4 currently) ;</pre>
variables:
<pre>double lon(lon) ;</pre>
<pre>double lat(lat) ;</pre>
<pre>double time(time) ;</pre>
<pre>float Temperature(time, lat, lon) ;</pre>
data:
lon = -180, -90, 0, 90;
lat = -90, -30, 30, 90;
time = 0, 3, 6, 9 ;
temperature =
111, 112, 113, 114,
121, 122, 123, 124,
131, 132, 133, 134,
141, 142, 143, 144,
211, 212, 213, 214,
221, 222, 223, 224,
231, 232, 233, 234,
241, 242, 243, 244,
311, 312, 313, 314,
•••

NetCDF

5	7								
			Temperature						
	lat	lon	time[0]	time[1]	time[2]	time[3]			
	-90	-180	111	211	311	411			
	-90	-90	112	212	312	412			
	-90	0	113	213	313	413			
	-90	90	114	214	314	414			
	-30	-180	121	221	321	421			
	-30	-90	122	222	322	422			
	-30	0	123	223	323	423			
	-30	90	124	224	324	424			
	30	-180	131	231	331	431			
	30	-90	132	232	332	432			
	30	0	133	233	333	433			
	30	90	134	234	334	434			
	90	-180	141	241	341	441			
	90	-90	142	242	342	442			
	90	0	143	243	343	443			
	90	90	144	244	344	444			

Ophidia

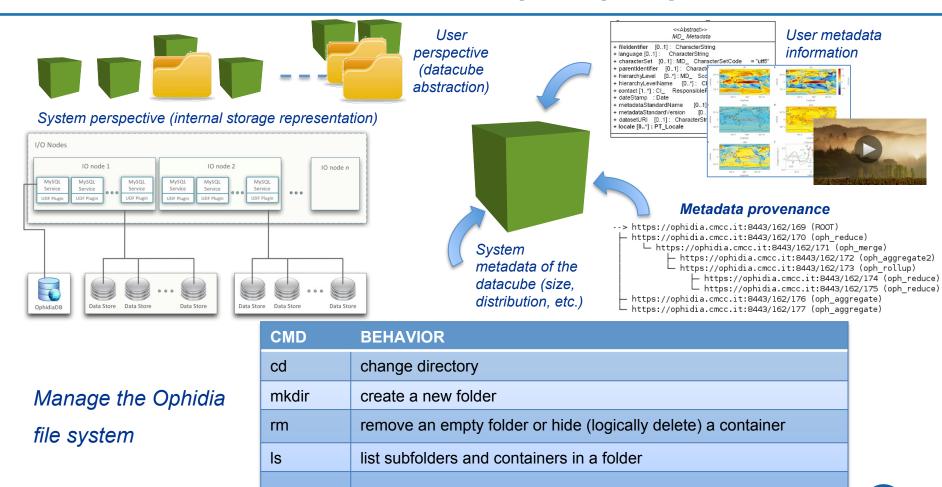
<pre>netcdf test { dimensions:</pre>					
lat = 4 ;					
lon = 4;	ID		Ar	ray	
<pre>time = UNLIMITED // (4 currently) ;</pre>		111			411
variables:	1		211	311	
double lon(lon) ;	2	112	212	312	412
<pre>double lat(lat) ;</pre>	3	113	213	313	413
<pre>double time(time) ;</pre>	4	114	214	314	414
<pre>float Temperature(time, lat, lon) ;</pre>	5	121	221	321	421
data:	6	122	222	322	422
lon = -180, -90, 0, 90;	7	123	223	323	423
lat = -90, -30, 30, 90; time = 0, 3, 6, 9;	8	124	224	324	424
temperature =	9	131	231	331	431
111, 112, 113, 114,	10	132	232	332	431
121, 122, 123, 124,					
131, 132, 133, 134,	11	133	233	333	433
141, 142, 143, 144,	12	134	234	334	434
211, 212, 213, 214,	13	141	241	341	441
221, 222, 223, 224,	14	142	242	342	442
231, 232, 233, 234,	15	143	243	343	443
241, 242, 243, 244,	16	144	244	344	444
311, 312, 313, 314,					
•••			Ophi	dia	

NetCDF


```
netcdf test {
dimensions:
   lat = 4;
   lon = 4;
    time = UNLIMITED // (4 currently) ;
    double lon(lon) ;
    double lat(lat) ;
    double time(time) ;
    float Temperature(time, lat, lon) ;
data:
   lon = -180, -90, 0, 90;
   lat = -90, -30, 30, 90;
    time = 0, 3, 6, 9;
    temperature =
       111, 112, 113, 114,
          121, 122, 123, 124,
          131, 132, 133, 134,
          141, 142, 143, 144,
        211, 212, 213, 214,
          221, 222, 223, 224,
          231, 232, 233, 234,
         241, 242, 243, 244,
        311, 312, 313, 314,
          . . .
```

Ν	let	C	D	F
IN	CU			

7							
		Temperature					
lat	lon	time[0]	time[1]	time[2]	time[3]		
-90	-180	111	211	311	411		
-90	-90	112	212	312	412		
-90	0	113	213	313	413		
-90	90	114	214	314	414		
-30	-180	121	221	321	421		
-30	-90	122	222	322	422		
-30	0	123	223	323	423		
-30	90	124	224	324	424		
30	-180	131	231	331	431		
30	-90	132	232	332	432		
30	0	133	233	333	433		
30	90	134	234	334	434		
90	-180	141	241	341	441		
90	-90	142	242	342	442		
90	0	143	243	343	443		
90	90	144	244	344	444		

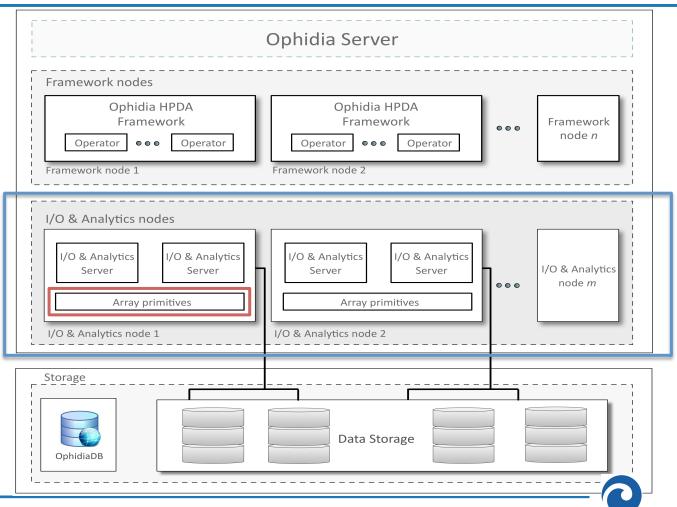

Ophidia

<pre>netcdf test {</pre>				FRAG1			
dimensions:				Temperature			
lat = 4;	lat	lon	time[0]	time[1]	time[2]	time[3]	
lon = 4 ;	-90	-180	111	211	311	411	
<pre>time = UNLIMITED // (4 currently) ;</pre>	-90			212	312	412	
variables:	-90			212	313	413	
double lon(lon) ;		-	_	_			
<pre>double lat(lat) ;</pre>	-90			214	314	414	
<pre>double time(time) ;</pre>	-30) -180	121	221	321	421	
<pre>float Temperature(time, lat, lon) ;</pre>	-30) -90	122	222	322	422	
data:	-30) 0	123	223	323	423	
lon = -180, -90, 0, 90;	-30) 90	124	224	324	424	
lat = -90, -30, 30, 90;							
time = 0, 3, 6, 9;			FRAG2				
temperature =			Temperature				
111, 112, 113, 114,	lat	lon	time[0]	time[1]	time[2]	time[3]	
121, 122, 123, 124,	30	-180	131	231	331	431	
131, 132, 133, 134,	30	-90	132	232	332	432	
141, 142, 143, 144,	30		133	233	333	433	
211, 212, 213, 214,	30		134	234	334	434	
221, 222, 223, 224,							
231, 232, 233, 234,	90		141	241	341	441	
241, 242, 243, 244,	90		142	242	342	442	
311, 312, 313, 314,	90	0	143	243	343	443	
•••	90	90	144	244	344	444	
NotCDE				Onhidia			
NetCDF	N			Ophidia			

Data abstraction: cube space perspective

CENTRE OF EXCELLENCE IN SIMULATION OF WEATHER

. . .


Ophidia architecture: I/O & Analytics layer

Multiple **I/O & analytics nodes** execute one or more servers

Servers run the arraybased **primitives** (UDF)

Servers can transparently interface to different storage back-ends

Support for a native inmemory array-based analytics & I/O engine

Ophidia array-based primitives

Ophidia provides a wide set of array-based primitives (around 100) to perform:

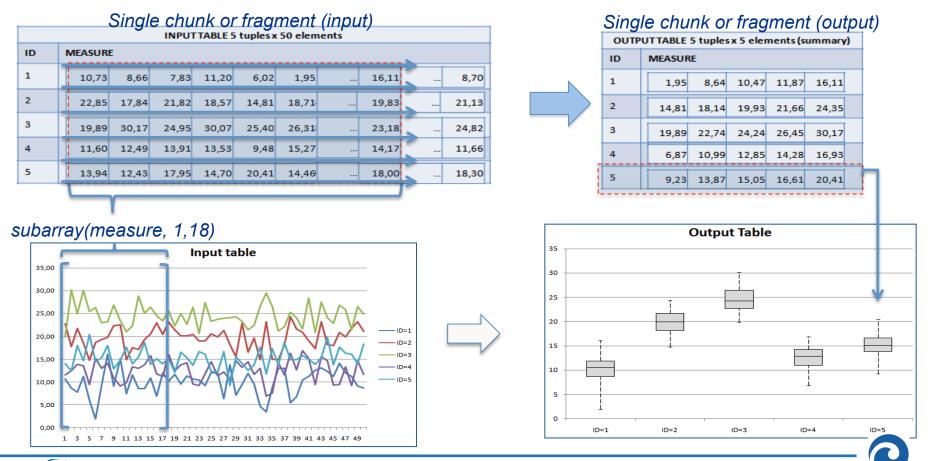
 data summarisation, sub-setting, predicates evaluation, statistical analysis, array concatenation, algebraic expression, regression, etc.

Primitives come as plugins (UDF) and are applied on a single datacube chunk (fragment)

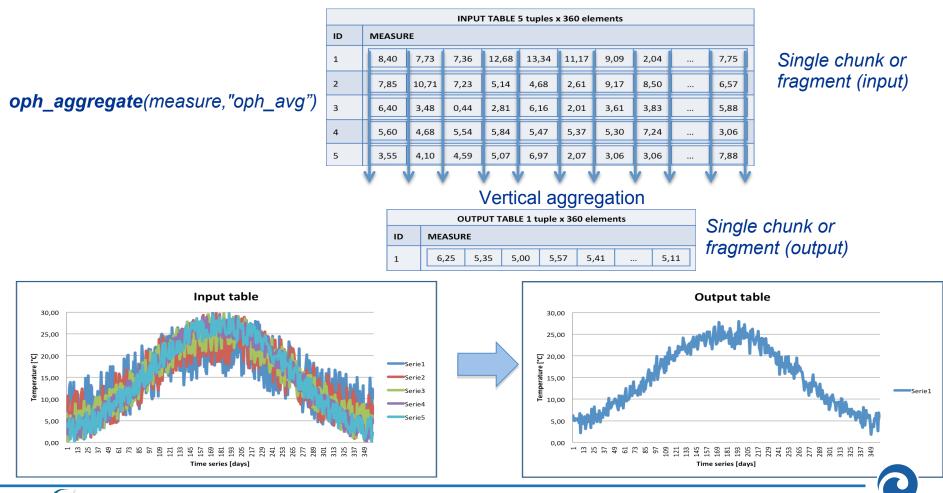
Primitives can be nested to get more complex functionalities

New primitives can be easily integrated as additional plugins

oph_apply operator to run any primitive on a datacube

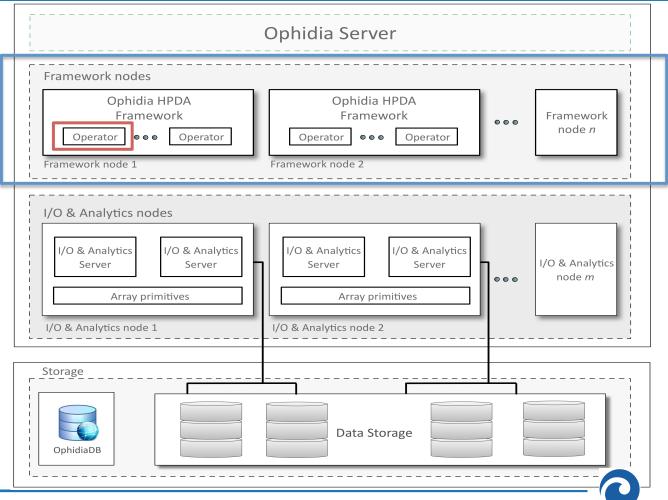

oph_apply(oph_predicate(measure, 'x-298.15', '>0', '1', '0'))

Ophidia Primitives documentation: http://ophidia.cmcc.it/documentation/users/primitives/index.html


Array based primitives: nesting feature

oph_boxplot(oph_subarray(oph_uncompress(measure), 1,18))

Array based primitives: oph_aggregate


CENTRE OF EXCELLENCE IN SIMULATION OF WEATHER AND CLINKEE IN EVALUATION OF WEATHER

Ophidia architecture: framework layer

The Ophidia analytics framework can be executed with multiple processes/threads

Provides the environment for the execution of parallel MPI/Pthread-based operators

Operators manipulate the entire set of fragments associated to a **whole datacube**

Ophidia operators

CLASS	PROCESSING TYPE	OPERATOR(S)
I/O	Parallel	OPH_IMPORTNC, OPH_EXPORTNC, OPH_CONCATNC, OPH_RANDUCUBE
Time series processing	Parallel	OPH_APPLY
Datacube reduction	Parallel	OPH_REDUCE, OPH_REDUCE2, OPH_AGGREGATE
Datacube subsetting	Parallel	OPH_SUBSET
Datacube combination	Parallel	OPH_INTERCUBE, OPH_MERGECUBES
Datacube structure manipulation	Parallel	OPH_SPLIT, OPH_MERGE, OPH_ROLLUP, OPH_DRILLDOWN, OPH_PERMUTE
Datacube/file system management	Sequential	OPH_DELETE, OPH_FOLDER, OPH_FS
Metadata management	Sequential	OPH_METADATA, OPH_CUBEIO, OPH_CUBESCHEMA
Datacube exploration	Sequential	OPH_EXPLORECUBE, OPH_EXPLORENC

About 50 operators for data and metadata processing

Ophidia operators documentation: http://ophidia.cmcc.it/documentation/users/operators/index.html

CENTRE OF EXCELLENCE IN SIMULATION OF WEATHER

Ophidia "data" operators

[37..4416] >> oph_explorecube cube=http://127.0.0.1/ophidia/35/67 subset_dims=lat|lon|time;subset_filter=39:42|15:19|1:275;show_time=yes; [Request]:

operator=oph_explorecube;cube=http://127.0.0.1/ophidia/35/67;subset_dims=lat|lon|time;subset_filter=39:42|15:19|1:275;show_time=yes;sessionid=http://127.0.0.1/ophidia/sessions/374383780832141666641463737283924416/experiment;exec_mode=sync;ncores=1;cwd=/;

[JobID]:

http://127.0.0.1/ophidia/sessions/374383780832141666641463737283924416/experiment?106#224

[Response]:

tos

+======+		+======================================
lat	lon	tos
39.500000	15.000000	1.00000002e+20, 1.000000002e+20, 1.000000002e+20, 1.000000002e+20, 1.000000002e+20, 1.000000002e+20, 1.000000002e+20, 1.000000002e+20, 1.00000000002e+20, 1.000000002e+20, 1.000000002e+20, 1.000000002e+20, 1.000000002e+20, 1.000000002e+20, 1.000000002e+20, 1.000000002e+20, 1.000000002e+20, 1.0000000002e+20, 1.00000000000000000000000000000000000
39.500000	17.000000	287.3930664062, 286.8287048340, 286.5860595703, 286.9228210449, 288.5254516602, 292.3968200684, 295.8656921387, 297.2062072754, 295.7126464844
39.500000	19.000000	287.6926879883, 287.0508117676, 286.7896118164, 287.0781555176, 288.6802062988, 292.6882629395, 296.4769287109, 297.6632385254, 296.3418273926
40.500000	15.000000	1.00000002e+20, 1.000000002e+20, 1.000000002e+20, 1.000000002e+20, 1.000000002e+20, 1.000000002e+20, 1.000000002e+20, 1.000000002e+20, 1.00000000002e+20, 1.000000002e+20, 1.000000002e+20, 1.000000002e+20, 1.000000002e+20, 1.000000002e+20, 1.000000002e+20, 1.000000002e+20, 1.0000000002e
40.500000	17.000000	287.1098632812, 286.5683593750, 286.2949829102, 286.5216674805, 288.0316772461, 291.7698974609, 295.4139709473, 296.8489685059, 295.4132995605
40.500000	19.000000	287.4010009766, 286.7818298340, 286.4914245605, 286.7260742188, 288.3006286621, 292.1842346191, 296.0237731934, 297.2694702148, 295.9751892090
41.500000	15.000000	1.00000002e+20, 1.00000002e+20, 1.00000002e+20, 1.00000002e+20, 1.00000002e+20, 1.00000002e+20, 1.000000002e+20, 1.00000002e+20, 1.000000002e+20, 1.000000002e+20, 1.000000002e+20, 1.000000002e+20, 1.00000000000000000000000000000000000
41.500000	17.000000	286.5835876465, 286.0175781250, 285.7146911621, 285.9142761230, 287.4476623535, 291.1032104492, 294.7090454102, 296.0852355957, 294.7053222656
41.500000	19.000000	286.9717712402, 286.3946838379, 286.0617675781, 286.1446228027, 287.6101989746, 291.2955017090, 295.2700195312, 296.5146179199, 295.3194274902

Summary

Selected 9 rows out of 9

Ophidia "metadata" operators

[37..4416] >> oph_cubeio

[Request]:


operator=oph_cubeio;sessionid=http://127.0.0.1/ophidia/sessions/374383780832141666641463737283924416/experiment;exec_mode=sync;ncores=1;cube=http://127.0.0.1/ophidia/35/74;cwd=/;

[JobID]:

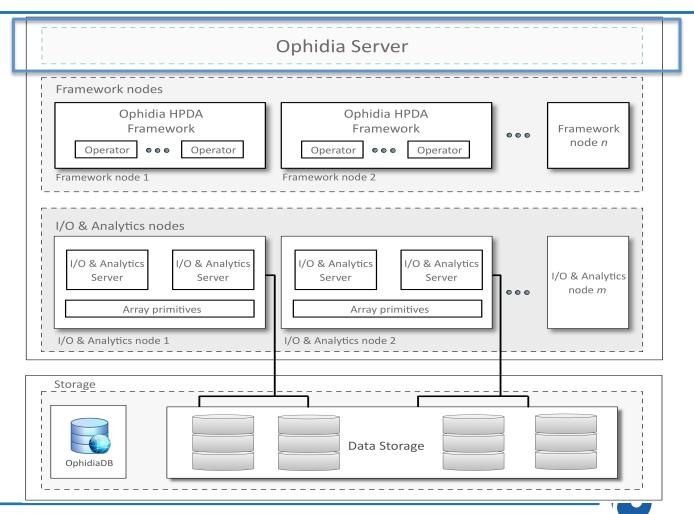
http://127.0.0.1/ophidia/sessions/374383780832141666641463737283924416/experiment?82#176

[Response]:

Cube Provenance

Ophidia architecture: front-end layer

Multi-interface server front-end


Manages user **authN/ authZ**, **sessions** and requests

Manages task/ workflow execution

Remote interactions with:

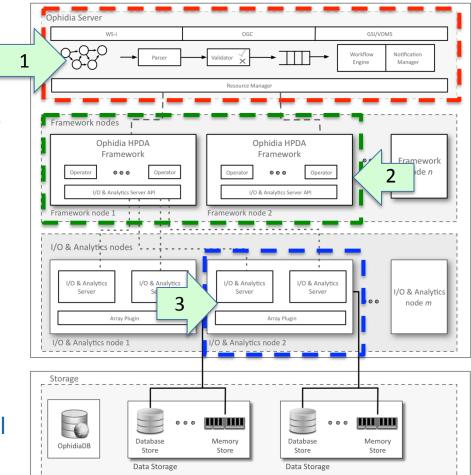
- o oph_term (CLI)
- WPS clients

• Python modules

CENTRE OF EXCELLENCE IN SIMULATION OF WEATHER AND CLIMARE IN EUROPE

Three levels of parallelism

Datacube-level parallelism


- o HTC paradigm
- o At the front-end level
- Based on the "<u>massive</u>" operator concept

Framework-level parallelism

- o HPC paradigm
- o MPI/Pthread
- o At the HPDA framework level

Fragment-level parallelism

- o OpenMP based
- o At the I/O & analytics server level

On-demand instantiation of an Ophidia cluster


Target environment: HPC cluster

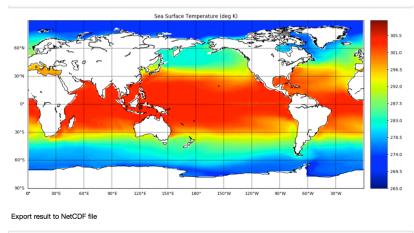
Deployment of I/O & analytics servers

- o oph_cluster action=deploy;nhost=64;cluster_name=new;
- o oph_cluster
 action=undeploy;cluster_name=new;

Zeus SuperComputer at CMCC: 1.2 PetaFlops, 348 nodes

Multiple isolated instances can be deployed simultaneously by different teams/users

Python programmatic access to Ophidia


PyOphidia is a GPLv3-licensed Python module to interact with the Ophidia framework.

It provides a programmatic access to Ophidia features, allowing:

- o Submission of commands to the Ophidia Server and retrieval of the results
- o Management of (remote) data objects in the form of datacubes
- o Easy exploitation from Jupyter Notebooks and integration with other Python modules

```
from PyOphidia import cube, client
cube.Cube.setclient(read_env=True)
mycube =
cube.Cube.importnc(src_path='/public/data/ecas_training
/file.nc', measure='tos', imp_dim='time',
import_metadata='yes', ncores=5)
mycube2 = mycube.reduce(operation='max',ncores=5)
mycube3 = mycube2.rollup(ncores=5)
data = mycube3.export_array()
```

```
mycube3.exportnc2(output_path='/home/test',
export_metadata='yes')
```


]: mycube3.exportnc2(output_path='/home/' + cube.Cube.client.username,export_metadata='yes'

Python and HPC infrastructure transparency

PyOphidia class hides the HPC environment complexity

```
In [ ]: from PyOphidia import cube, client
        cube.Cube.setclient(read env=True)
In [ ]: cube.Cube.cluster(action='deploy', host partition='test partition', nhost=4)
In [ ]: myCube = cube.Cube(src path='/work/ophidia/tests/tasmax day CMCC-CESM rcp85.nc',
            measure='tasmax', import metadata='yes', imp dim='time', description='Max Temps',
            nfrag=16, nhosts=4,
            host partition='test2',
            ncores=2, nthreads=8
            )
In [ ]: myCube2 = maxtemp.apply(
            guery="oph predicate('oph float','oph int',measure,'x-298.15','>0','1','0')",
            ncores=2, nthreads=8
In []: myCube3 = myCube2.subset(subset filter=1, subset dims='time')
```

In []: pythonData = myCube3.export_array(show_time='yes')

```
In [ ]: print(pythonData)
```

In []: cube.Cube.cluster(action='undeploy', host_partition='test_partition')

Python and HPC infrastructure transparency

PyOphidia class hides the HPC environment complexity Dynamic I/O & Analytics In []: from PyOphidia import cube, client cube.Cube.setclient(read env=True) nodes allocation cube.Cube.cluster(action='deploy', host partition='test partition', nhost=4) In | 1: In []: myCube = cube.Cube(src path='/work/ophidia/tests/tasmax day CMCC-CESM rcp85.nc', measure='tasmax', import_metadata='yes', imp_dim='time', description='Max_Temps', nfrag=16, nhosts=4, Data partitioning host partition='test2' ncores=2, nthreads=8 and distribution Framework operator myCube2 = maxtemp.apply(guery="oph predicate('oph float','oph int',measure,'x-298.15','>0','1','0')", parallelism ncores=2, nthreads=8 myCube3 = myCube2.subset(subset filter=1, subset dims='time' Ophidia-notebook data 1: In [translation and transfer In []: pythonData = myCube3.export array(show time='yes' In []: print(pythonData) I/O & Analytics nodes undeployment In []: cube.Cube.cluster(action='undeploy', host partition='test partition' esiwace

Summary

- Scientific data management and analytics pose challenges requiring novel and efficient software solution
- ✓ Joining HPC and data-intensive analytics is an enabling factor for scientific applications
- ✓ The Ophidia HPDA framework addresses challenges for scientific analysis, through:
 - Scalable architecture
 - Data distribution and partitioning
 - Parallel (MPI/Pthread-based) operators
 - HPC-oriented deployment
- ✓ PyOphidia module hide the complexity of HPC infrastructure, provides a user-friendly interface and can be easily exploited in Jupyter Notebooks

References and further readings

- D. A. Reed and J. Dongarra. (2015). Exascale computing and big data. Commun. ACM 58, 7 (July 2015), 56–68.
- Jha, S., Qiu, J., Luckow, A., Mantha, P., & Fox, G. C. (2014). A tale of two data-intensive paradigms: Applications, abstractions, and architectures. In 2014 IEEE Int. Congress on Big Data, 645-652.
- Asch, M., et al. (2018). Big data and extreme-scale computing: Pathways to convergence-toward a shaping strategy for a future software and data ecosystem for scientific inquiry. Int. J. High Perform. Comput. Appl., 32(4), 435-479.
- Luca Cinquini, et al. (2014). The Earth System Grid Federation: An open infrastructure for access to distributed geospatial data. Future Gener. Comput. Syst. 36: 400-417.
- GMD topical editors (Eds.), V. Eyring (coordinator) (2012). Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental Design and Organization [Special Issue]. Geosci. Model Dev. https://gmd.copernicus.org/articles/special_issue590.html
- G. Aloisio, S. Fiore, I. Foster, D. Williams (2013). Scientific big data analytics challenges at large scale. Big Data and Extreme-scale Computing (BDEC), April 30 to May 01, 2013, Charleston, South Carolina, USA (position paper).
- S. Fiore, A. D'Anca, C. Palazzo, I. T. Foster, D. N. Williams, G. Aloisio (2013). Ophidia: Toward Big Data Analytics for eScience. ICCS 2013, volume 18 of Procedia Computer Science, pp. 2376-2385.
- S. Fiore, A. D'Anca, D. Elia, C. Palazzo, I. Foster, D. Williams, G. Aloisio (2014). "Ophidia: A Full Software Stack for Scientific Data Analytics", proc. of the 2014 Int. Conference on High Performance Computing & Simulation (HPCS 2014), pp. 343-350.
- S. Fiore, D. Elia, C. Palazzo, F. Antonio, A. D'Anca, I. Foster and G. Aloisio (2019), "Towards High Performance Data Analytics for Climate Change", ISC High Performance 2019. Lecture Notes in Computer Science, vol. 11887, pp. 240-257.
- D. Elia, S. Fiore, A. D'Anca, C. Palazzo, I. Foster, D. N. Williams, G. Aloisio (2016). "An in-memory based framework for scientific data analytics". In Proc. of the ACM Int. Conference on Computing Frontiers (CF '16), pp. 424-429.

Thank you!

This training has been organised in the context of the ESiWACE2 project:

ESiWACE2 has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 823988.

Ophidia website: http://ophidia.cmcc.it

Contact: ophidia-info AT cmcc.it

