
1

Federal Department of Home Affairs FDHA
Federal Office of Meteorology and Climatology MeteoSwiss

A minimal and lightweight front-end for dawn

Introduction to dusk

2

Dusk is:
• A programming language

− dusk script/dusk stencil language
− A domain specific language embedded in Python (Python eDSL)

• A compiler/transpiler
− Compiles/transpiles dusk to SIR
− Can call into dawn to directly generate C++

• A software component to translate dusk to SIR or C++
− Also contains a Python API to programmatically translate dusk
− Written in Python
− no dependencies other than Python’s standard library

Dusk Overview

3

Dusk is:
• A programming language

− dusk script/dusk stencil language
− A domain specific language embedded in Python (Python eDSL)

• A compiler/transpiler
− Compiles/transpiles dusk to SIR
− Can call into dawn to directly generate C++

• A software component to translate dusk to SIR or C++
− Also contains a Python API to programmatically translate dusk
− Written in Python
− no dependencies other than Python’s standard library

Dusk Overview

4

Dusk Framework

Dusk Dawn

Python
File SIR C++

5

Dusk Framework

Dusk Dawn

Python
File SIR C++CLI

6

Dusk Framework

Dusk Dawn

Python
File SIR C++

Python
Function
Pointer

CLI

7

Dusk Framework

Dusk Dawn

Python
File SIR C++

Python
Function
Pointer

CLI

Python
API

8

Dusk Framework

Dusk Dawn

Python
File SIR C++

Python
Function
Pointer

CLI

Python
API

compile

9

Dusk Framework

Dusk Dawn

Python
File SIR C++

Python
Function
Pointer

CLI

Python
API

compilecompile

10

Dusk Framework

Dusk Dawn

Python
File SIR C++

Python
Function
Pointer

CLI

Python
API

compilecompile

11

Dusk is:
• A programming language

− dusk script/dusk stencil language
− A domain specific language embedded in Python (Python eDSL)

• A compiler/transpiler
− Compiles/transpiles dusk to SIR
− Can call into dawn to directly generate C++

• A software component to translate dusk to SIR or C++
− Also contains a Python API to programmatically translate dusk
− Written in Python
− no dependencies other than Python’s standard library

Dusk Overview

12

Dusk is:
• A programming language

− dusk script/dusk stencil language
− A domain specific language embedded in Python (Python eDSL)

• A compiler/transpiler
− Compiles/transpiles dusk to SIR
− Can call into dawn to directly generate C++

• A software component to translate dusk to SIR or C++
− Also contains a Python API to programmatically translate dusk
− Written in Python
− no dependencies other than Python’s standard library

Dusk Overview

How does dusk fit into weather & climate models?
Where are the stencils in a climate or weather model?

13

Codebase of a weather or climate model:
• Initialization (MPI, Mesh, etc)
• File Input/Output (data, config, logs, etc)
• Simulation/Calculations

− Dynamics
− Physics
− …

• ...

Dusk in weather & climate models

14

Codebase of a weather or climate model:
• Initialization (MPI, Mesh, etc)
• File Input/Output (data, config, logs, etc)
• Simulation/Calculations

− Dynamics
− Physics
− …

• ...

Dusk in weather & climate models

Most stencils are here.

15

Codebase of a weather or climate model:
• Initialization (MPI, Mesh, etc)
• File Input/Output (data, config, logs, etc)
• Simulation/Calculations

− Dynamics
− Physics
− …

• ...

Dusk in weather & climate models

Most stencils are here.
This is a major part of the runtime.

16

Codebase of a weather or climate model:
• Initialization (MPI, Mesh, etc)
• File Input/Output (data, config, logs, etc)
• Simulation/Calculations

− Dynamics
− Physics
− …

• ...

Dusk in weather & climate models

Most stencils are here.
This is a major part of the runtime.
Let’s use hardware accelerators to speed this up.

17

Codebase of a weather or climate model:
• Initialization (MPI, Mesh, etc)
• File Input/Output (data, config, logs, etc)
• Simulation/Calculations

− Dynamics
− Physics
− …

• ...

Dusk in weather & climate models

Most stencils are here.
This is a major part of the runtime.
Let’s use hardware accelerators to speed this up.
E.g., GPUs...

18

Dusk in weather & climate models

CPU GPU

Dynamics

Stencil 1

Stencil 2

Stencil 3

19

GPU

Dusk in weather & climate models

CPU

Dynamics

Stencil 1

Stencil 2

Stencil 3

The stencils run on the hardware accelerator.
E.g., a GPU

20

GPU

Dusk in weather & climate models

CPU

Dynamics

Stencil 1

Stencil 2

Stencil 3

There’s still code running on the CPU.

21

GPU

v

Dusk in weather & climate models

CPU

Dynamics

Stencil 1

Stencil 2

Stencil 3

There’s still code running on the CPU.
This code decides when and how the stencils are run.

22

GPU

v

Dusk in weather & climate models

CPU

Dynamics

Stencil 1

Stencil 2

Stencil 3

There’s still code running on the CPU.
This code decides when and how the stencils are run.
 ≈ Dynamics component without the stencils

23

GPU

Dusk in weather & climate models

CPU

Dynamics

Stencil 1

Stencil 2

Stencil 3

We call this the driver code…
It drives the stencils (unrelated to hardware drivers).

dr
iv

er

24

GPU

Dusk in weather & climate models

CPU

Dynamics

Stencil 1

Stencil 2

Stencil 3

So where is dusk?

dr
iv

er

25

GPU

Dusk in weather & climate models

CPU

Dynamics

Stencil 1

Stencil 2

Stencil 3

Dusk is mostly the stencils.

dr
iv

er

26

GPU

Dusk in weather & climate models

CPU

Dynamics

Stencil 1

Stencil 2

Stencil 3

Dusk is mostly the stencils.
However, the line isn’t always that clear.
Sometimes it can be quite blurry.

dr
iv

er

27

GPU

Dusk in weather & climate models

CPU

Dynamics

Stencil 1

Stencil 2

E.g., a bigger stencil

dr
iv

er

28

GPU

Dusk in weather & climate models

CPU

Dynamics

Stencil 2

E.g., a bigger stencil consisting of two parts

dr
iv

er

1st part

2nd part

29

GPU

1st part

2nd part

Dusk in weather & climate models

CPU

Dynamics

Stencil 2

E.g., a bigger stencil consisting of two parts that
requires a global synchronization in the middle.

dr
iv

er sync

30

GPU

1st part

2nd part

Dusk in weather & climate models

CPU

Dynamics

Stencil 2

E.g., a bigger stencil consisting of two parts that
requires a global synchronization in the middle.
Can only be done in CUDA by splitting the kernel.

dr
iv

er sync

31

GPU

2nd part

Dusk in weather & climate models

CPU

Dynamics

Stencil 2

There’s now a small part running on the CPU to make
sure the 2nd part is called immediately after the 1st
part. This is technically still part of the stencil.

dr
iv

er sync

1st part

32

GPU

2nd part

Dusk in weather & climate models

CPU

Dynamics

Stencil 2

There’s now a small part running on the CPU to make
sure the 2nd part is called immediately after the 1st
part. This is technically still part of the stencil.
It drives the CUDA kernel.

dr
iv

er sync

1st part

33

GPU

2nd part

Dusk in weather & climate models

CPU

Dynamics

Stencil 2

It drives the CUDA kernel.

dr
iv

er sync

1st part

34

GPU

2nd part

Dusk in weather & climate models

CPU

Dynamics

Stencil 2

It drives the CUDA kernel.
But we don’t consider it driver code.

dr
iv

er sync

1st part

35

GPU

Stencil 2

Dusk in weather & climate models

CPU

Dynamics

Stencil 3

Another examples:

dr
iv

er

Stencil 1

36

GPU

Stencil 2

Dusk in weather & climate models

CPU

Dynamics

Stencil 3

Another examples:
Simple driver code between two stencils.

dr
iv

er

Stencil 1

37

GPU

Stencil 2

Dusk in weather & climate models

CPU

Dynamics

Stencil 3

Another examples:
Simple driver code between two stencils.
We want to combine Stencil 1 & Stencil 2 to get better
performance.

dr
iv

er

Stencil 1

38

GPU

Dusk in weather & climate models

CPU

Dynamics

Stencil 3

Another examples:
Simple driver code between two stencils.
We want to combine Stencil 1 & Stencil 2 to get better
performance.

dr
iv

er

Stencil 1

Stencil 2

39

GPU

Dusk in weather & climate models

CPU

Dynamics

Stencil 3

We let the previous driver code run on the GPU too.

dr
iv

er

Stencil 1

Stencil 2

40

GPU

Dusk in weather & climate models

CPU

Dynamics

Stencil 3

We let the previous driver code run on the GPU too.

dr
iv

er

Stencil 1

Stencil 2

41

GPU

Dusk in weather & climate models

CPU

Dynamics

Stencil 3

We let the previous driver code run on the GPU too.

dr
iv

er

Stencil 1

Stencil 2

42

GPU

Dusk in weather & climate models

CPU

Dynamics

Stencil 3

We let the previous driver code run on the GPU too.
What was previously driver code has now become part
of the CUDA kernel.

dr
iv

er

Stencil 1

Stencil 2

43

• Dusk is mostly the stencils
• Dusk requires driver code that

− decides how/when the stencils are run
− sets up the mesh
− allocates memory

• The boundary between dusk & driver code is sometimes blurry
• Simple driver code that can run on the CPU can also be written in Dusk

− In the future this will likely grow
− Stencils can be merged into bigger stencils

• More optimization opportunities

Dusk in weather & climate models

44

• Dusk is a subset of Python (on the syntactic level)
• Dusk is statically typed

− Python has dynamic types
− Python added optional type hints in version 3.5 (2015)
− These type hints are mandatory & enforced in dusk

• Dusk assigns different meanings to Python language elements
− (different on the semantic level)

Dusk Stencil Language

45

• Python can do many things. E.g., starting a web server
− We don’t want to start web servers in stencils
− A lot of Python language elements are disallowed in dusk

• We assign different meanings to some Python elements
− This is done to make dusk more ergonomic
− Dusk targets domain scientists possibly with a Fortran background
− It may upset experienced Python developers
− This was a deliberate compromise

Dusk Stencil Language

46

from dusk.script import *

@stencil
def example_stencil(
 a: Field[Edge, K],
 b: Field[Edge, K]
):
 with levels_upward:
 a = b + 1

Dusk eDSL

47

from dusk.script import *

@stencil
def example_stencil(
 a: Field[Edge, K],
 b: Field[Edge, K]
):
 with levels_upward:
 a = b + 1

Dusk eDSL

Import magic keywords for the dusk language

48

from dusk.script import *

@stencil
def example_stencil(
 a: Field[Edge, K],
 b: Field[Edge, K]
):
 with levels_upward:
 a = b + 1

Dusk eDSL

Marks that a Python function is a dusk stencil
• This is what dusk will translate
• Other Python code will be ignored

49

from dusk.script import *

@stencil
def example_stencil(
 a: Field[Edge, K],
 b: Field[Edge, K]
):
 with levels_upward:
 a = b + 1

Dusk eDSL

Name of the stencil

50

from dusk.script import *

@stencil
def example_stencil(
 a: Field[Edge, K],
 b: Field[Edge, K]
):
 with levels_upward:
 a = b + 1

Dusk eDSL

Field definitions
More on this later...

51

from dusk.script import *

@stencil
def example_stencil(
 a: Field[Edge, K],
 b: Field[Edge, K]
):
 with levels_upward:
 a = b + 1

Dusk eDSL

Apply the stencil on the whole domain
More on this later...

52

from dusk.script import *

@stencil
def example_stencil(
 a: Field[Edge, K],
 b: Field[Edge, K]
):
 with levels_upward:
 a = b + 1

Dusk eDSL

What the stencil should compute
Extents & Neighborhoods will come later...

53

from dusk.script import *

@stencil
def example_stencil(
 a: Field[Edge, K],
 b: Field[Edge, K]
):
 with levels_upward:
 a = b + 1

Temporaries

Sometimes we want to store an intermediate
result temporarily.

54

from dusk.script import *

@stencil
def example_stencil(
 a: Field[Edge, K],
 b: Field[Edge, K]
):
 with levels_upward:
 a = b + 1

Temporaries

Sometimes we want to store an intermediate
result temporarily.
For this we have temporary fields.

55

from dusk.script import *

@stencil
def example_stencil(
 a: Field[Edge, K],
 b: Field[Edge, K]
):
 temp: Field[Edge, K]
 with levels_upward:
 a = b + 1

Temporaries

Sometimes we want to store an intermediate
result temporarily.
For this we have temporary fields.

We have to declare them at the lowest
indentation level of the stencil.

56

from dusk.script import *

@stencil
def example_stencil(
 a: Field[Edge, K],
 b: Field[Edge, K]
):
 temp: Field[Edge, K]
 with levels_upward:
 a = b + 1
 temp = a + b

Temporaries

Sometimes we want to store an intermediate
result temporarily.
For this we have temporary fields.

We have to declare them at the lowest
indentation level of the stencil.

Then we can use them for our stencil
computations.

57

from dusk.script import *

@stencil
def example_stencil(
 a: Field[Edge, K],
 b: Field[Edge, K]
):
 temp: Field[Edge, K]
 with levels_upward:
 a = b + 1
 temp = a + b

API fields vs Temporaries

We distinguish between:

58

from dusk.script import *

@stencil
def example_stencil(
 a: Field[Edge, K],
 b: Field[Edge, K]
):
 temp: Field[Edge, K]
 with levels_upward:
 a = b + 1
 temp = a + b

API fields vs Temporaries

We distinguish between:
• API Fields

59

from dusk.script import *

@stencil
def example_stencil(
 a: Field[Edge, K],
 b: Field[Edge, K]
):
 temp: Field[Edge, K]
 with levels_upward:
 a = b + 1
 temp = a + b

API fields vs Temporaries

We distinguish between:
• API Fields
• And temporary Fields

60

from dusk.script import *

@stencil
def example_stencil(
 a: Field[Edge, K],
 b: Field[Edge, K]
):
 temp: Field[Edge, K]
 with levels_upward:
 a = b + 1
 temp = a + b

API fields vs Temporaries

API Fields:
• Are allocated/deallocated by the driver

code

61

from dusk.script import *

@stencil
def example_stencil(
 a: Field[Edge, K],
 b: Field[Edge, K]
):
 temp: Field[Edge, K]
 with levels_upward:
 a = b + 1
 temp = a + b

API fields vs Temporaries

API Fields:
• Are allocated/deallocated by the driver

code
• Persist between stencil runs

62

from dusk.script import *

@stencil
def example_stencil(
 a: Field[Edge, K],
 b: Field[Edge, K]
):
 temp: Field[Edge, K]
 with levels_upward:
 a = b + 1
 temp = a + b

API fields vs Temporaries

API Fields:
• Are allocated/deallocated by the driver

code
• Persist between stencil runs
• Are owned by the driver code

63

from dusk.script import *

@stencil
def example_stencil(
 a: Field[Edge, K],
 b: Field[Edge, K]
):
 temp: Field[Edge, K]
 with levels_upward:
 a = b + 1
 temp = a + b

API fields vs Temporaries

Temporary Fields:
• Are allocated/deallocated by the

generated stencil

64

from dusk.script import *

@stencil
def example_stencil(
 a: Field[Edge, K],
 b: Field[Edge, K]
):
 temp: Field[Edge, K]
 with levels_upward:
 a = b + 1
 temp = a + b

API fields vs Temporaries

Temporary Fields:
• Are allocated/deallocated by the

generated stencil
• Only exist while the stencil is running

65

from dusk.script import *

@stencil
def example_stencil(
 a: Field[Edge, K],
 b: Field[Edge, K]
):
 temp: Field[Edge, K]
 with levels_upward:
 a = b + 1
 temp = a + b

API fields vs Temporaries

Temporary Fields:
• Are allocated/deallocated by the

generated stencil
• Only exist while the stencil is running
• Are owned by the stencil

66

from dusk.script import *

@stencil
def example_stencil(
 a: Field[Edge, K],
 b: Field[Edge, K]
):
 temp: Field[Edge, K]
 with levels_upward:
 a = b + 1
 temp = a + b

API fields vs Temporaries

Temporary Fields:
• Are allocated/deallocated by the

generated stencil
• Only exist while the stencil is running
• Are owned by the stencil

Dawn is free to remove or add temporary
fields during optimization passes.

67

from dusk.script import *

@stencil
def example_stencil(
 a: Field[Edge, K],
 b: Field[Edge, K]
):
 temp: Field[Edge, K]
 with levels_upward:
 a = b + 1
 temp = a + b

API fields vs Temporaries

Temporary Fields:
• Are allocated/deallocated by the

generated stencil
• Only exist while the stencil is running
• Are owned by the stencil

Dawn is free to remove or add temporary
fields during optimization passes.

However, dawn must respect and preserve how
API Fields are mutated.

68

from dusk.script import *

@stencil
def example_stencil(
 a: Field[Edge, K],
 b: Field[Edge, K]
):
 temp: Field[Edge, K]
 with levels_upward:
 a = b + 1
 temp = a + b

API fields vs Temporaries

Unfortunately, user defined temporary fields are
currently broken (only in the naive/CPU
backend).

Don’t use them when solving the exercises.

😅

69

if mask[k] or mask[k + 1]:
 a = sum_over(Edge > Cell, b - c)

 if a *= d / e:
 f = g + max(
 3.141 * d + h,
 sqrt(a) / h + e ** h)

**.

Dusk/Fortran Comparison

IF (mask(k) .OR. mask(k + 1)) THEN
 a = b(j,1,blk) - &
 c(nbh(j,blk,1),k,nbh_blk(j,blk,1)) + &
 b(j,2,blk) - &
 c(nbh(j,blk,2),k,nbh_blk(j,blk,2))

 IF (a *= d / e(j,k,blk)) THEN
 f = g + MAX(3.141_wp * d + h, &
 SQRT(a) / h + e(j,k,blk) ** h)

! **.

70

IF (mask(k) .OR. mask(k + 1)) THEN
 a = b(j,1,blk) - &
 c(nbh(j,blk,1),k,nbh_blk(j,blk,1)) + &
 b(j,2,blk) - &
 c(nbh(j,blk,2),k,nbh_blk(j,blk,2))

 IF (a *= d / e(j,k,blk)) THEN
 f = g + MAX(3.141_wp * d + h, &
 SQRT(a) / h + e(j,k,blk) ** h)

! **.

if mask[k] or mask[k + 1]:
 a = sum_over(Edge > Cell, b - c)

 if a *= d / e:
 f = g + max(
 3.141 * d + h,
 sqrt(a) / h + e ** h)

**.

Dusk/Fortran Comparison

Contextual information is automatically filled with sane defaults
-> Less verbose, more to the point

71

Dusk/Fortran Comparison

This contextual information is mostly redundant and can sometimes become pretty big
(redundant ≈ can be automatically inferred)

if mask[k] or mask[k + 1]:
 a = sum_over(Edge > Cell, b - c)

 if a *= d / e:
 f = g + max(
 3.141 * d + h,
 sqrt(a) / h + e ** h)

**.

IF (mask(k) .OR. mask(k + 1)) THEN
 a = b(j,1,blk) - &
 c(nbh(j,blk,1),k,nbh_blk(j,blk,1)) + &
 b(j,2,blk) - &
 c(nbh(j,blk,2),k,nbh_blk(j,blk,2))

 IF (a *= d / e(j,k,blk)) THEN
 f = g + MAX(3.141_wp * d + h, &
 SQRT(a) / h + e(j,k,blk) ** h)

! **.

72

IF (mask(k) .OR. mask(k + 1)) THEN
 a = b(j,1,blk) - &
 c(nbh(j,blk,1),k,nbh_blk(j,blk,1)) + &
 b(j,2,blk) - &
 c(nbh(j,blk,2),k,nbh_blk(j,blk,2))

 IF (a *= d / e(j,k,blk)) THEN
 f = g + MAX(3.141_wp * d + h, &
 SQRT(a) / h + e(j,k,blk) ** h)

! **.

Dusk/Fortran Comparison

Code clones are generally avoided

if mask[k] or mask[k + 1]:
 a = sum_over(Edge > Cell, b - c)

 if a *= d / e:
 f = g + max(
 3.141 * d + h,
 sqrt(a) / h + e ** h)

**.

73

IF (mask(k) .OR. mask(k + 1)) THEN
 a = b(j,1,blk) - &
 c(nbh(j,blk,1),k,nbh_blk(j,blk,1)) + &
 b(j,2,blk) - &
 c(nbh(j,blk,2),k,nbh_blk(j,blk,2))

 IF (a *= d / e(j,k,blk)) THEN
 f = g + MAX(3.141_wp * d + h, &
 SQRT(a) / h + e(j,k,blk) ** h)

! **.

if mask[k] or mask[k + 1]:
 a = sum_over(Edge > Cell, b - c)

 if a *= d / e:
 f = g + max(
 3.141 * d + h,
 sqrt(a) / h + e ** h)

**.

Dusk/Fortran Comparison

But those aren’t exactly code clones...

74

if mask[k] or mask[k + 1]:
 a = sum_over(Edge > Cell, b - c)

 if a *= d / e:
 f = g + max(
 3.141 * d + h,
 sqrt(a) / h + e ** h)

**.

Dusk/Fortran Comparison

But those aren’t exactly code clones…
True. However, we can infer that as well…
Because we describe the algorithm on a higher level

IF (mask(k) .OR. mask(k + 1)) THEN
 a = b(j,1,blk) - &
 c(nbh(j,blk,1),k,nbh_blk(j,blk,1)) + &
 b(j,2,blk) - &
 c(nbh(j,blk,2),k,nbh_blk(j,blk,2))

 IF (a *= d / e(j,k,blk)) THEN
 f = g + MAX(3.141_wp * d + h, &
 SQRT(a) / h + e(j,k,blk) ** h)

! **.

75

if mask[k] or mask[k + 1]:
 a = sum_over(Edge > Cell, b - c)

 if a *= d / e:
 f = g + max(
 3.141 * d + h,
 sqrt(a) / h + e ** h)

**.

Dusk/Fortran Comparison

More on `sum_over` later

IF (mask(k) .OR. mask(k + 1)) THEN
 a = b(j,1,blk) - &
 c(nbh(j,blk,1),k,nbh_blk(j,blk,1)) + &
 b(j,2,blk) - &
 c(nbh(j,blk,2),k,nbh_blk(j,blk,2))

 IF (a *= d / e(j,k,blk)) THEN
 f = g + MAX(3.141_wp * d + h, &
 SQRT(a) / h + e(j,k,blk) ** h)

! **.

76

if mask[k] or mask[k + 1]:
 a = sum_over(Edge > Cell, b - c)

 if a *= d / e:
 f = g + max(
 3.141 * d + h,
 sqrt(a) / h + e ** h)

**.

Dusk/Fortran Comparison

We also use high-level constructs to describe local neighborhoods

IF (mask(k) .OR. mask(k + 1)) THEN
 a = b(j,1,blk) - &
 c(nbh(j,blk,1),k,nbh_blk(j,blk,1)) + &
 b(j,2,blk) - &
 c(nbh(j,blk,2),k,nbh_blk(j,blk,2))

 IF (a *= d / e(j,k,blk)) THEN
 f = g + MAX(3.141_wp * d + h, &
 SQRT(a) / h + e(j,k,blk) ** h)

! **.

77

if mask[k] or mask[k + 1]:
 a = sum_over(Edge > Cell, b - c)

 if a *= d / e:
 f = g + max(
 3.141 * d + h,
 sqrt(a) / h + e ** h)

**.

Dusk/Fortran Comparison

More on `Edge > Cell` later

IF (mask(k) .OR. mask(k + 1)) THEN
 a = b(j,1,blk) - &
 c(nbh(j,blk,1),k,nbh_blk(j,blk,1)) + &
 b(j,2,blk) - &
 c(nbh(j,blk,2),k,nbh_blk(j,blk,2))

 IF (a *= d / e(j,k,blk)) THEN
 f = g + MAX(3.141_wp * d + h, &
 SQRT(a) / h + e(j,k,blk) ** h)

! **.

78

Dusk/Fortran Comparison

IF (mask(k) .OR. mask(k + 1)) THEN
 a = b(j,1,blk) - &
 c(nbh(j,blk,1),k,nbh_blk(j,blk,1)) + &
 b(j,2,blk) - &
 c(nbh(j,blk,2),k,nbh_blk(j,blk,2))

 IF (a *= d / e(j,k,blk)) THEN
 f = g + MAX(3.141_wp * d + h, &
 SQRT(a) / h + e(j,k,blk) ** h)

! **.

Still, we can appreciate similarities between Python and Fortran 👍

if mask[k] or mask[k + 1]:
 a = sum_over(Edge > Cell, b - c)

 if a *= d / e:
 f = g + max(
 3.141 * d + h,
 sqrt(a) / h + e ** h)

**.

79

Dusk/Fortran Comparison

IF (mask(k) .OR. mask(k + 1)) THEN
 a = b(j,1,blk) - &
 c(nbh(j,blk,1),k,nbh_blk(j,blk,1)) + &
 b(j,2,blk) - &
 c(nbh(j,blk,2),k,nbh_blk(j,blk,2))

 IF (a *= d / e(j,k,blk)) THEN
 f = g + MAX(3.141_wp * d + h, &
 SQRT(a) / h + e(j,k,blk) ** h)

! **.

Still, we can appreciate similarities between Python and Fortran 👍
(for the exercises, if you want to do x ** 2 you have to write that as x ** 2.0 due to a
small typing issue)

if mask[k] or mask[k + 1]:
 a = sum_over(Edge > Cell, b - c)

 if a *= d / e:
 f = g + max(
 3.141 * d + h,
 sqrt(a) / h + e ** h)

**.

80

m = sum_over(Edge > Cell > Vertex, o * p)

Dusk/Fortran Comparison

m(j,k,blk) = &
 o(j,1,blk) * &
 p(nbh_p(j,blk,1),k,blk_p(j,blk,1)) + &
 o(j,2,blk) * &
 p(nbh_p(j,blk,2),k,blk_p(j,blk,2)) + &
 o(j,3,blk) * &
 p(nbh_p(j,blk,3),k,blk_p(j,blk,3)) + &
 o(j,4,blk) * &
 p(nbh_p(j,blk,4),k,blk_p(j,blk,4))

81

m = sum_over(Edge > Cell > Vertex, o * p)

Dusk/Fortran Comparison

m(j,k,blk) = &
 o(j,1,blk) * &
 p(nbh_p(j,blk,1),k,blk_p(j,blk,1)) + &
 o(j,2,blk) * &
 p(nbh_p(j,blk,2),k,blk_p(j,blk,2)) + &
 o(j,3,blk) * &
 p(nbh_p(j,blk,3),k,blk_p(j,blk,3)) + &
 o(j,4,blk) * &
 p(nbh_p(j,blk,4),k,blk_p(j,blk,4))

This is a bigger neighborhood that contains 4 neighboring locations

82

m = sum_over(Edge > Cell > Vertex, o * p)

Dusk/Fortran Comparison

During compilation this can be automatically unrolled

m(j,k,blk) = &
 o(j,1,blk) * &
 p(nbh_p(j,blk,1),k,blk_p(j,blk,1)) + &
 o(j,2,blk) * &
 p(nbh_p(j,blk,2),k,blk_p(j,blk,2)) + &
 o(j,3,blk) * &
 p(nbh_p(j,blk,3),k,blk_p(j,blk,3)) + &
 o(j,4,blk) * &
 p(nbh_p(j,blk,4),k,blk_p(j,blk,4))

83

m = sum_over(Edge > Cell > Vertex, o * p) m(j,k,blk) = &
 o(j,1,blk) * &
 p(nbh_p(j,blk,1),k,blk_p(j,blk,1)) + &
 o(j,2,blk) * &
 p(nbh_p(j,blk,2),k,blk_p(j,blk,2)) + &
 o(j,3,blk) * &
 p(nbh_p(j,blk,3),k,blk_p(j,blk,3)) + &
 o(j,4,blk) * &
 p(nbh_p(j,blk,4),k,blk_p(j,blk,4))

Dusk/Fortran Comparison

We concisely describe:

84

m = sum_over(Edge > Cell > Vertex, o * p) m(j,k,blk) = &
 o(j,1,blk) * &
 p(nbh_p(j,blk,1),k,blk_p(j,blk,1)) + &
 o(j,2,blk) * &
 p(nbh_p(j,blk,2),k,blk_p(j,blk,2)) + &
 o(j,3,blk) * &
 p(nbh_p(j,blk,3),k,blk_p(j,blk,3)) + &
 o(j,4,blk) * &
 p(nbh_p(j,blk,4),k,blk_p(j,blk,4))

Dusk/Fortran Comparison

We concisely describe:
● What we compute

85

m(j,k,blk) = &
 o(j,1,blk) * &
 p(nbh_p(j,blk,1),k,blk_p(j,blk,1)) + &
 o(j,2,blk) * &
 p(nbh_p(j,blk,2),k,blk_p(j,blk,2)) + &
 o(j,3,blk) * &
 p(nbh_p(j,blk,3),k,blk_p(j,blk,3)) + &
 o(j,4,blk) * &
 p(nbh_p(j,blk,4),k,blk_p(j,blk,4))

m = sum_over(Edge > Cell > Vertex, o * p)

Dusk/Fortran Comparison

We concisely describe:
● What we compute
● Where we compute it

86

m(j,k,blk) = &
 o(j,1,blk) * &
 p(nbh_p(j,blk,1),k,blk_p(j,blk,1)) + &
 o(j,2,blk) * &
 p(nbh_p(j,blk,2),k,blk_p(j,blk,2)) + &
 o(j,3,blk) * &
 p(nbh_p(j,blk,3),k,blk_p(j,blk,3)) + &
 o(j,4,blk) * &
 p(nbh_p(j,blk,4),k,blk_p(j,blk,4))

m = sum_over(Edge > Cell > Vertex, o * p)

Dusk/Fortran Comparison

Both are separated ≈ not interleaved

87

m = sum_over(Edge > Cell > Vertex, o * p) m(j,k,blk) = &
 o(j,1,blk) * &
 p(nbh_p(j,blk,1),k,blk_p(j,blk,1)) + &
 o(j,2,blk) * &
 p(nbh_p(j,blk,2),k,blk_p(j,blk,2)) + &
 o(j,3,blk) * &
 p(nbh_p(j,blk,3),k,blk_p(j,blk,3)) + &
 o(j,4,blk) * &
 p(nbh_p(j,blk,4),k,blk_p(j,blk,4))

Dusk/Fortran Comparison

Yes, not all code samples will see such a big change.
But these benefits are very real and lead to (arguably) better code overall.

88

a = 4.0 * sum_over(
 Edge > Cell > Vertex,
 b + c,
 weights=[
 d ** 2,
 d ** 2,
 e ** 2,
 e ** 2,
],
)

Dusk/Fortran Comparison

a(je,jk,jb) = 4._wp * (&
 (b4(je,jk) + b3(je,jk) + &
 2._wp*c(je,jk,jb)) &
 *e(je,jb)**2 + &
 (b2(je,jk) + b1(je,jk) + &
 2._wp*c(je,jk,jb)) &
 *d(je,jb)**2)

89

a = 4.0 * sum_over(
 Edge > Cell > Vertex,
 b + c,
 weights=[
 d ** 2,
 d ** 2,
 e ** 2,
 e ** 2,
],
)

Dusk/Fortran Comparison

a(je,jk,jb) = 4._wp * (&
 (b4(je,jk) + b3(je,jk) + &
 2._wp*c(je,jk,jb)) &
 *e(je,jb)**2 + &
 (b2(je,jk) + b1(je,jk) + &
 2._wp*c(je,jk,jb)) &
 *d(je,jb)**2)

A more moderate example

90

a = 4.0 * sum_over(
 Edge > Cell > Vertex,
 b + c,
 weights=[
 d ** 2,
 d ** 2,
 e ** 2,
 e ** 2,
],
)

Dusk/Fortran Comparison

a(je,jk,jb) = 4._wp * (&
 (b4(je,jk) + b3(je,jk) + &
 2._wp*c(je,jk,jb)) &
 *e(je,jb)**2 + &
 (b2(je,jk) + b1(je,jk) + &
 2._wp*c(je,jk,jb)) &
 *d(je,jb)**2)

Dusk doesn’t magically remove all redundancies

91

a = 4.0 * sum_over(
 Edge > Cell > Vertex,
 b + c,
 weights=[
 d ** 2,
 d ** 2,
 e ** 2,
 e ** 2,
],
)

Dusk/Fortran Comparison

a(je,jk,jb) = 4._wp * (&
 (b4(je,jk) + b3(je,jk) + &
 2._wp*c(je,jk,jb)) &
 *e(je,jb)**2 + &
 (b2(je,jk) + b1(je,jk) + &
 2._wp*c(je,jk,jb)) &
 *d(je,jb)**2)

Dusk doesn’t magically remove all redundancies
It’s important to acknowledge this for an honest and fair discourse

92

a = 4.0 * sum_over(
 Edge > Cell > Vertex,
 b + c,
 weights=[
 d ** 2,
 d ** 2,
 e ** 2,
 e ** 2,
],
)

a(je,jk,jb) = 4._wp * (&
 (b4(je,jk) + b3(je,jk) + &
 2._wp*c(je,jk,jb)) &
 *e(je,jb)**2 + &
 (b2(je,jk) + b1(je,jk) + &
 2._wp*c(je,jk,jb)) &
 *d(je,jb)**2)

Dusk/Fortran Comparison

This introduces an element-wise multiplication with a weights vector.
For some stencils this is necessary.
(More on this later)

93

a = 4.0 * sum_over(
 Edge > Cell > Vertex,
 b + c,
 weights=[
 d ** 2,
 d ** 2,
 e ** 2,
 e ** 2,
],
)

a(je,jk,jb) = 4._wp * (&
 (b4(je,jk) + b3(je,jk) + &
 2._wp*c(je,jk,jb)) &
 *e(je,jb)**2 + &
 (b2(je,jk) + b1(je,jk) + &
 2._wp*c(je,jk,jb)) &
 *d(je,jb)**2)

Dusk/Fortran Comparison

Overall, the dusk version is expressed in a more high-level way

94

a = 4.0 * sum_over(
 Edge > Cell > Vertex,
 b + c,
 weights=[
 d ** 2,
 d ** 2,
 e ** 2,
 e ** 2,
],
)

a(je,jk,jb) = 4._wp * (&
 (b4(je,jk) + b3(je,jk) + &
 2._wp*c(je,jk,jb)) &
 *e(je,jb)**2 + &
 (b2(je,jk) + b1(je,jk) + &
 2._wp*c(je,jk,jb)) &
 *d(je,jb)**2)

Dusk/Fortran Comparison

Dusk naturally has an edge over Fortran, because they target different domains:
● Dusk: Specific to climate and weather models
● Fortran: More general, for numeric computation and scientific computing

95

• A minimal and lightweight front-end for dawn
− (Has been growing steadily)

• Started May 2020
• 2.6k LoC Pure Python
• No dependencies

− Only Python’s standard library
• (We might add small dependencies in the future)

• Currently only works with Python 3.8
− (Can be changed)

• Most functionality is a rather light translation pass from Python AST to SIR
− Very close to SIR for unstructured meshes

Dusk General Info

96

MeteoSvizzera
Via ai Monti 146
CH-6605 Locarno-Monti
T +41 58 460 92 22
www.meteosvizzera.ch

MétéoSuisse
7bis, av. de la Paix
CH-1211 Genève 2
T +41 58 460 98 88
www.meteosuisse.ch

MétéoSuisse
Chemin de l‘Aérologie
CH-1530 Payerne
T +41 58 460 94 44
www.meteosuisse.ch

MeteoSwiss
Operation Center 1
CH-8058 Zurich-Airport
T +41 58 460 91 11
www.meteoswiss.ch

Federal Department of Home Affairs FDHA
Federal Office of Meteorology and Climatology MeteoSwiss

