

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss

Prerequisites -ູ ເ

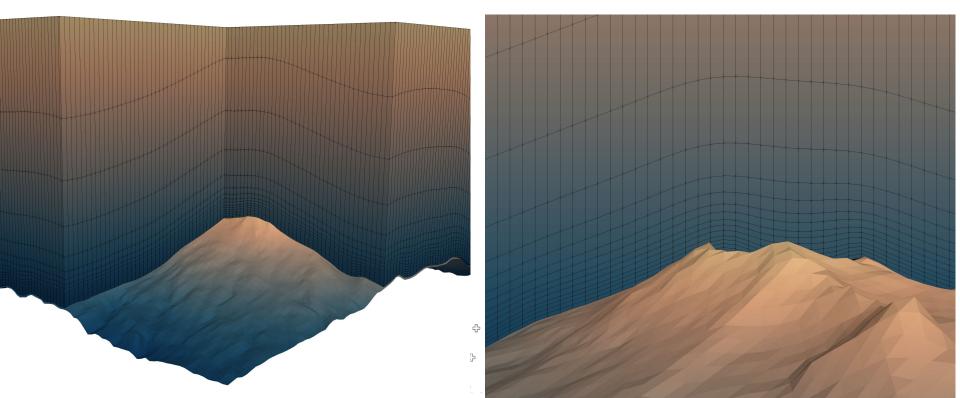
Overview:

- Intro model (FVM) and meshes.
- Prerequisites in vector analysis

- Different NWP and climate models use different numerical paradigms. The most important ones being
 - Finite Differences
 - Finite Volumes
 - Spectral Methods
 - Discontinuous Galerkin Methods
- These numerical methods need different kinds of meshes.
 - Finite Differences \rightarrow Cartesian Mesh
 - Finite Volumes \rightarrow General (unstructured) Meshes (within reason)

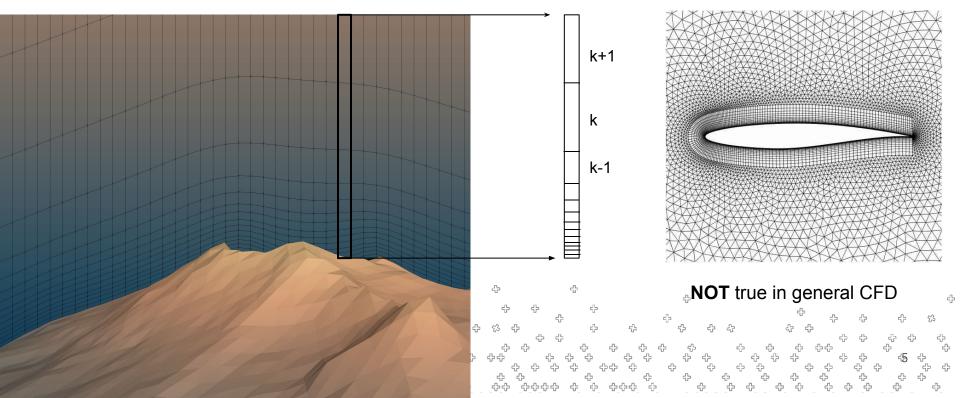
Meshes used in climate & NWP typically have some other interesting properties

• They are arranged in columns:



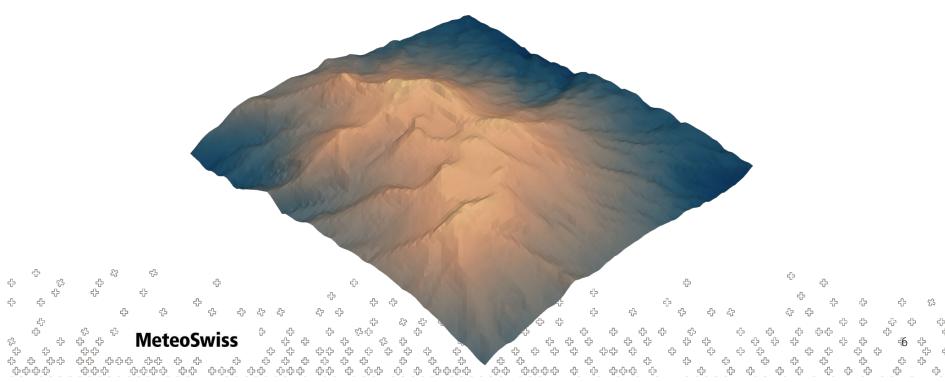
Meshes used in climate & NWP typically have some other interesting properties

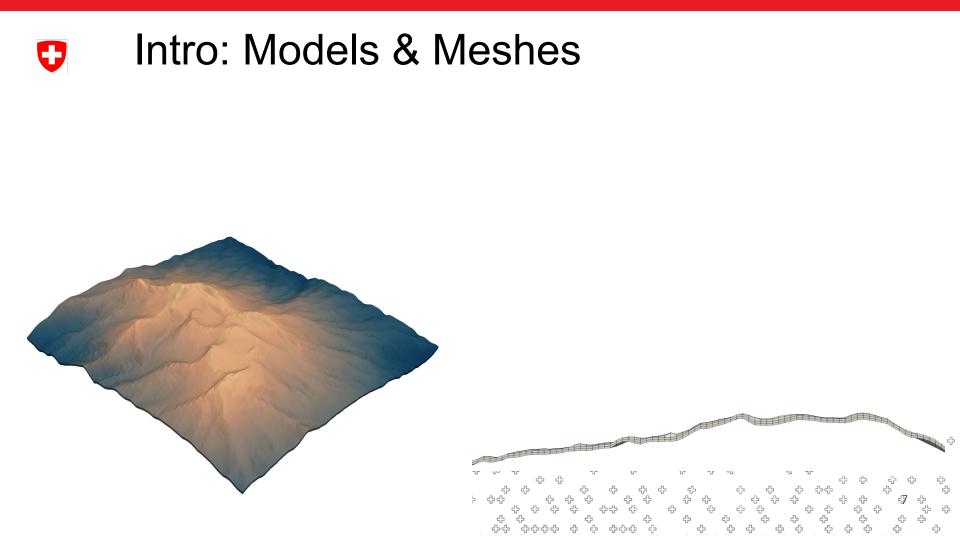
• They are arranged in columns:

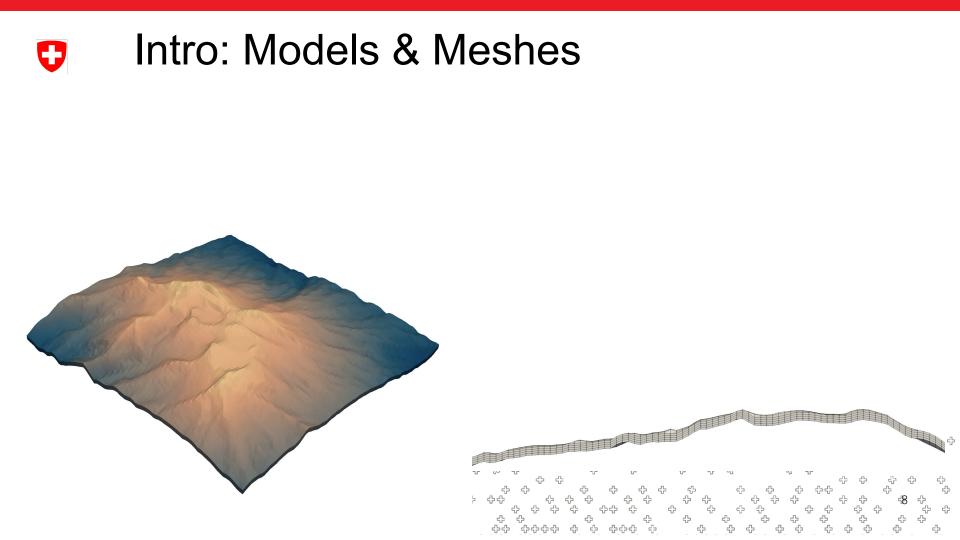


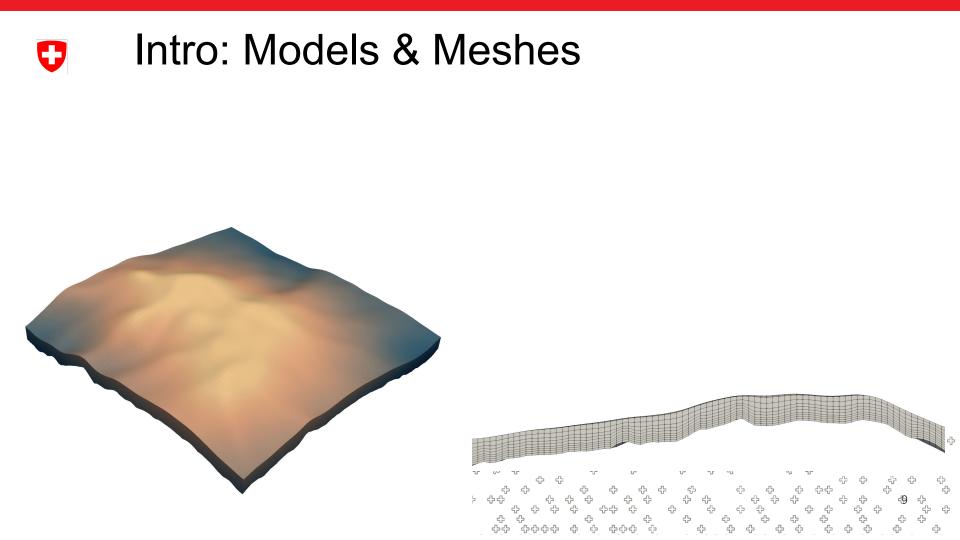
Meshes used in climate & NWP typically have some other interesting properties

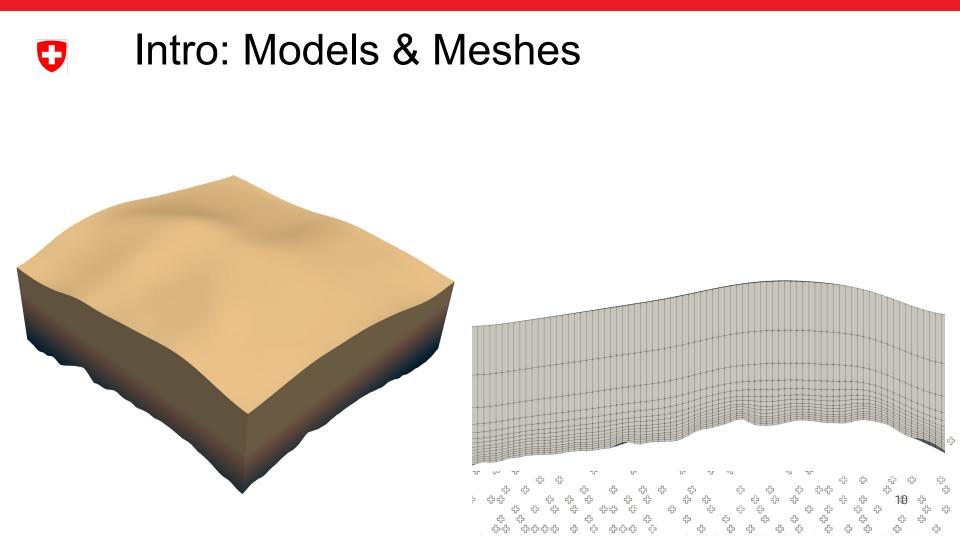
• They follow the Terrain

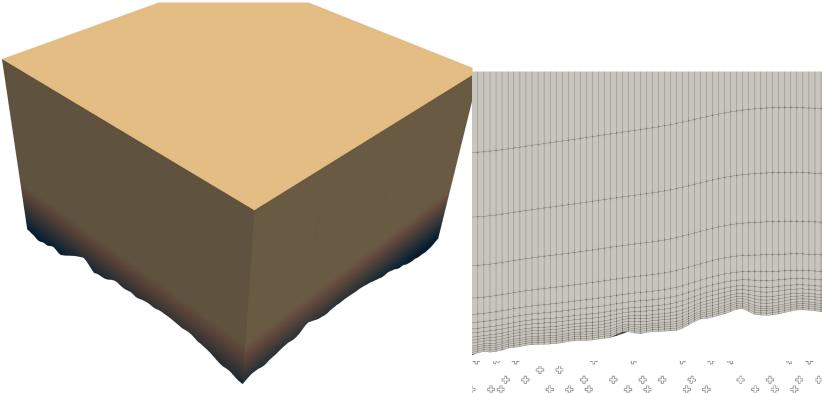


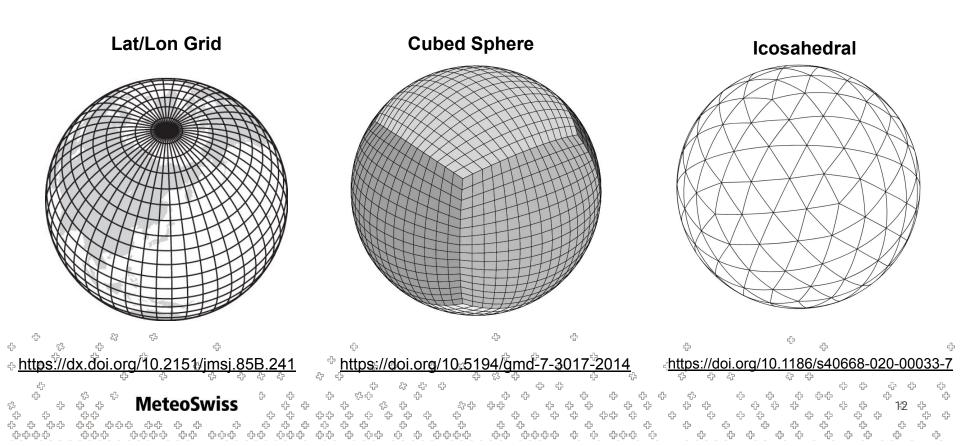






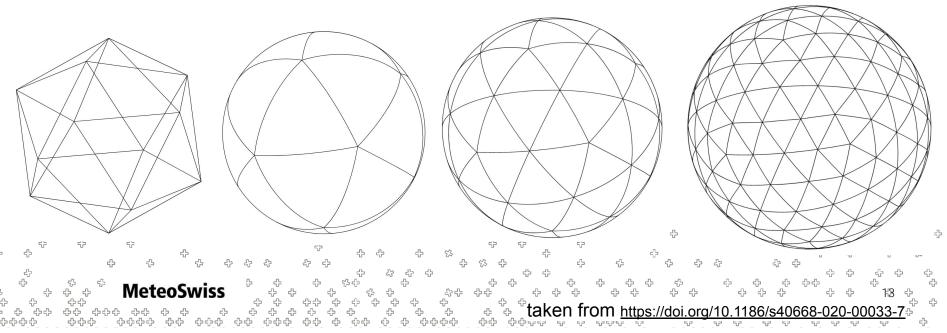






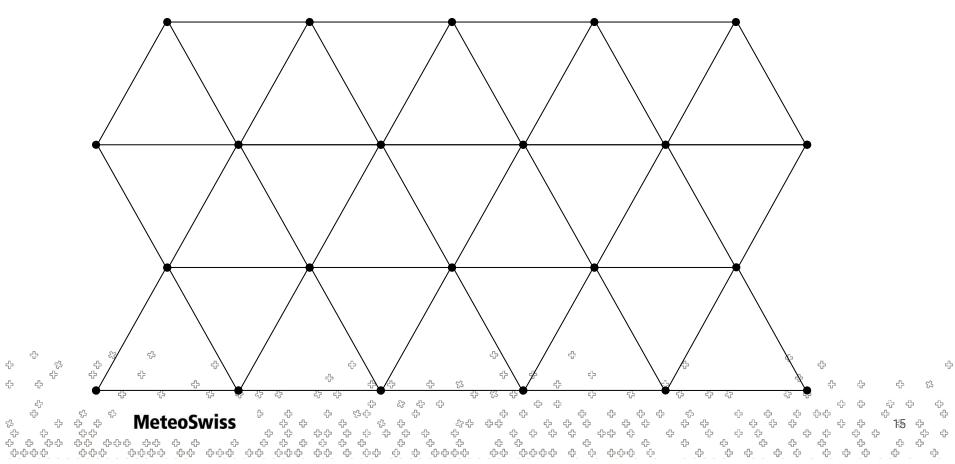
Intro: Models & Meshes - The ICON model

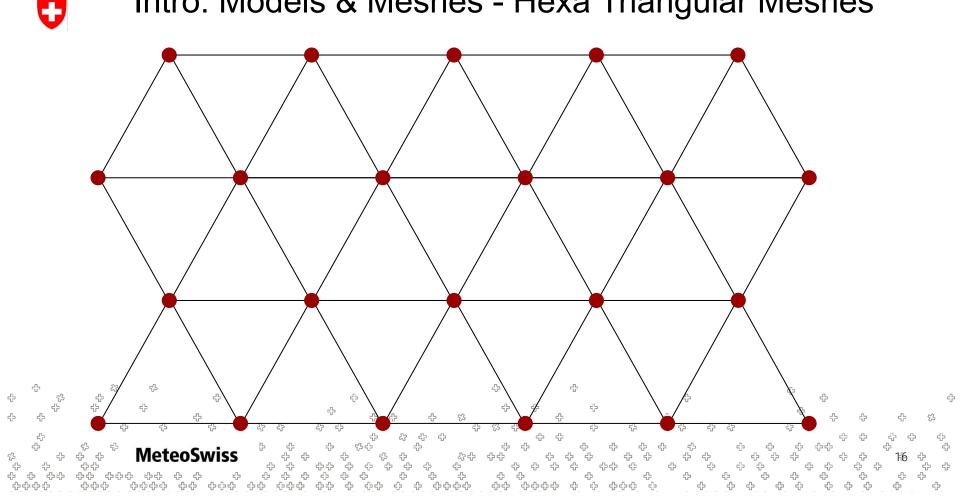
- ICON (Icosahedral Nonhydrostatic) Model
- Developed by DWD, MPI and others
- Model that drives dusk & dawn development
- Uses a special kind of triangular mesh \rightarrow the Icosahedral mesh

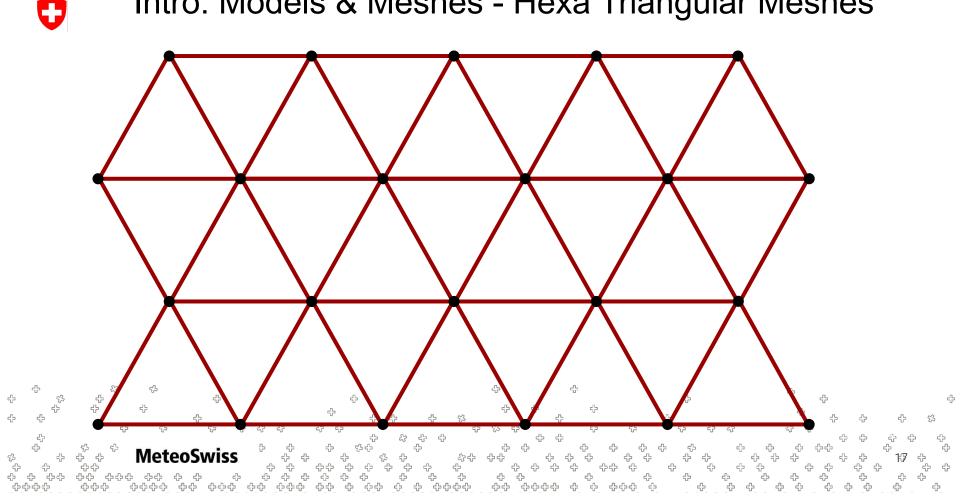


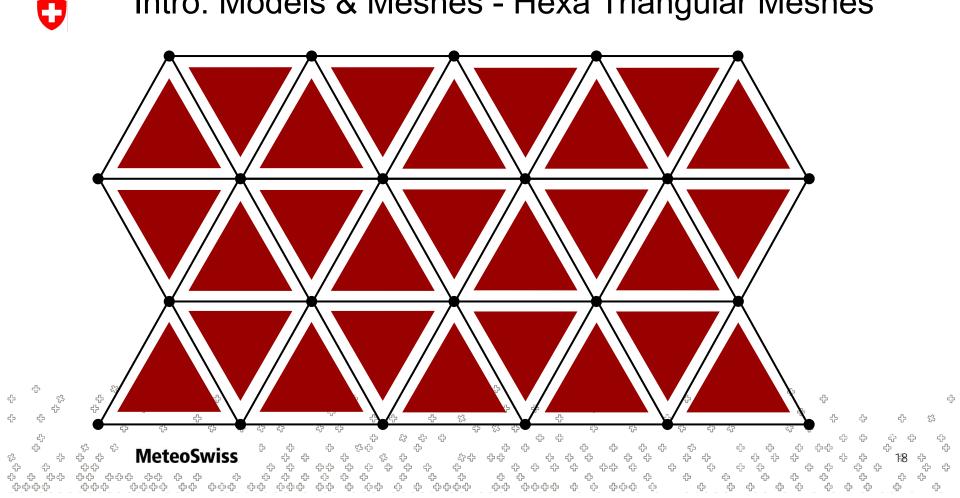
Intro: Models & Meshes - The ICON model

- ICON (Icosahedral Nonhydrostatic) Model
- Developed by DWD, MPI and others
- Model that drives dusk & dawn development
- Uses a special kind of triangular mesh \rightarrow the Icosahedral mesh
- Very "close" to a structured hex-triangle mesh
 - dual grid is hexagonal everywhere
 - except on the corners of the original subdivision where the dual mesh is pentagonal

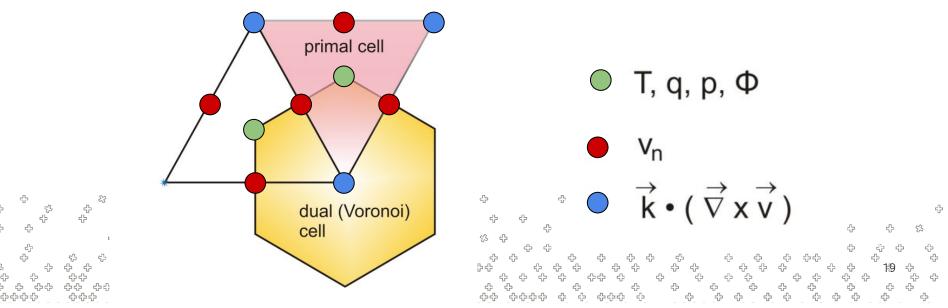








- Locations on mesh: Edges, Cell, Vertices (=Nodes)
- In Finite Volume (and to some extent Finite Difference) Models
 - Fields can be stored on any of the three locations
 - Where a field is stored is important
 - For example in ICON variables are located indicated below:



Vector Analysis Basics - The Gradient

In General:

In Cartesian \mathbb{R}^3 :

grad
$$f = \lim_{\Delta v \to 0} \frac{\oint_{\Sigma} f d\mathbf{S}}{\Delta v}$$

MeteoSwiss

$$\nabla f(x, y, z) = \left(\frac{\partial f}{\partial x}(x, y, z), \frac{\partial f}{\partial y}(x, y, z), \frac{\partial f}{\partial z}(x, y, z)\right)$$

- Σ: closed surface
- Δv : enclosed volume

This can be intuitively understood as follows: dS is a boundary element (with outer unit normal) of the volume Δv with boundary Σ . The outer normal on Σ is scaled with the local value of the field f at every point and the scaled normals are integrated over the whole boundary of Δv . If f has the same value everywhere, the integral evaluates to zero. If f is larger on one side of Δv than on the other, the result will be a non-zero vector pointing from the side where f is smaller to the side where it is larger. If we let the size of the volume Δv go to zero, we obtain a vector indicating the local point change in f and its direction.

<u>taken from lecture notes to Spatiotemporal</u>
 <u>Modeling and Simulation - Ivo Sbalzarini</u>

Vector Analysis Basics - The Divergence

In General:

In Cartesian \mathbb{R}^3 :

10

div
$$\mathbf{v} = \lim_{\Delta v \to 0} \frac{\oint_{\Sigma} \mathbf{v} d\mathbf{S}}{\Delta v}$$

$$\nabla \cdot \mathbf{v}(x, y, z) = \left(\frac{\partial v_1}{\partial x}(x, y, z), \frac{\partial v_2}{\partial y}(x, y, z), \frac{\partial v_3}{\partial z}(x, y, z)\right)$$

- Σ: closed surface
- Δv : enclosed volume

This can be intuitively understood: the vector field is locally projected onto the outer unit normal of the boundary Σ of the volume Δv and all the projections are integrated over the whole closed boundary. The integral will thus evaluate to the total amount of **v** that is crossing the boundary. If we let the size of the volume Δv go to zero, we obtain the local amount (scalar) of **v** that is "emerging" out of a point in space.

Vector Analysis Basics - The Curl

In General:

In Cartesian \mathbb{R}^3 :

$\operatorname{curl} \mathbf{v} = \lim_{\Delta v \to 0} \frac{\oint_{\Sigma} d\mathbf{S} \times \mathbf{v}}{\Delta v} \nabla \times \mathbf{v}(x, y, z) = \left(\frac{\partial v_3}{\partial y} - \frac{\partial v_2}{\partial z}, \frac{\partial v_1}{\partial z} - \frac{\partial v_3}{\partial x}, \frac{\partial v_2}{\partial x} - \frac{\partial v_1}{\partial y}\right)$

- Σ: closed surface
- Δv : enclosed volume

 MeteoSwiss
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *

The intuitive meaning of this equation is the following: at every point on the boundary of the volume Δv , we compute the cross product between the local vector field value and the outer unit normal on the volume's boundary Σ . This cross product will be maximum if \mathbf{v} is tangential to Σ and zero if \mathbf{v} is parallel to d**S**. We then integrate this quantity over the whole boundary, thus measuring the net amount of \mathbf{v} that is "running around" Σ . If we let the size of the volume go to zero, we obtain a vector whose length is the point-wise local vortex strength or rotation of the vector field \mathbf{v} and whose direction indicates the axis of rotation.

້ 👷 ອ<mark>taken from lecture notes to Spatiotemporal</mark> ອັ

42

ት ት

Vector Analysis Basics - The Curl

Operator	Symbol	Argument	Result	Interpretation
gradient	∇f	scalar	vector	steepest ascent
divergence	$ abla \cdot \mathbf{v}$	vector	scalar	source density
curl	$\nabla \times \mathbf{v}$	vector	vector	vortex strength

Vector Analysis Basics - Gauss Theorem

Also known as Green-Gauss Theorem or Divergence Theorem

MeteoSwiss

$$\oint_{\delta B} \mathbf{v} \cdot \mathbf{n} \, dS = \int_{\mathbf{B}} \nabla \cdot \mathbf{v} \, dV$$

ture notes to Spatiotempo

Simulation - Ivo Sbalzar

- The flux of v through ∂B from inside to outside is equal to the volume integral of ∇ · v over the enclosed volume B.
- "What is produced inside B has to flow out." This is a consequence of the conservation of mass in a flow with velocity field v.

Questions?

÷ 27 ÷ ÷ 4 ÷ ÷ ÷ 公 宁 ÷ 슈 슈 ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ 53 ÷ ÷ ÷ 2 ÷ 53 \$ \$ ÷ \$ 5 ÷ ÷ 4 윤 \$ 5 ÷ ÷ 53 ÷ \$ \$ 중 수 승수 ÷ 25 ሪ ት ጭ ት ÷ ÷ ÷ ÷ 53 ÷ ÷ ት ትት ф ф \$ ት ት ትት ትት ትትት ት ት ት ት ት ት ት ۍ ት ት ት *ጭ* ት ት ት ÷ ÷ ÷ ÷ ÷÷ \$ ÷ ÷ **MeteoSwiss** \$ \$ \$ \$ \$ \$ ት ት ф ф ት የ የ የ % ት ት ት ት ት ት ት ት * * * * ት ት ት ት ት ት ት ትትት ት ት ት ዮ . ج 分 令 ÷ ት ት ት ን ጉ ተ ተ ት ት ት ኇኇ ÷ ትት ት ት ÷ ት ት ÷ ÷ ÷ ት ት ት ት ф ф ÷ ф ф ን ቍቍ ቍ ቍቍቍ ት ትርት ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷