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PSycloneBench
PSyclone Benchmarking suite available at https://github.com/stfc/PSycloneBench

• NemoLite2D
A vertically averaged version of the dynamical part of NEMO ported to the Gocean PSyclone 
DSL. It has multiple manual implementations in different programming models for comparison 
with the PSyclone-generated code.

• Shallow Water
Originally developed by Paul Swarztrauber of NCAR and is a 2D shallow-water model with 
periodic boundary conditions in both dimensions.

• LFRic SMV
Multiple implementations of the matrix-vector multiplication operation done in the LFRic
application.

https://github.com/stfc/PSycloneBench


NemoLite2D

• Can be used by PSyclone with the GOcean DSL

• Has multiple manual implementations:

- Fortran: Serial, OpenMP, MPI and OpenACC

- C++: Serial, OpenMP, OmpSs, Kokkos

- OpenCL

- Regent



NemoLite2D Fortran Performance
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NemoLite2D Fortran MPI Performance
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Heterogeneous hardware landscape

▪ Is Fortran with Directives alone 
going to be enough?

Position Name Processor
Linpack

(TFlop/s)

#1 Fugaku Fujitsu A64FX 48C 415,530

#2 Summit IBM POWER9 22C

Nvidia V100 

148,600

#3 Sierra IBM POWER9 22C

Nvidia V100

94,640

#4 Taihulight Sunway SW26010 

260C

93,014

#5 Tianhe-2A Intel Xeon E5-2692v2 

12C MATRIX-2000

61,444 Kokkos

Upcoming systems also with Intel and AMD processors and 

accelerator architectures. Alternative architectures: FPGA, 

RISCV, …
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Fortran-to-OpenCL example

Fortran

PSyclone

Algorithm Code
(Fortran)

Kernel Code
(Fortran)

Algorithm Layer Parallel System Layer Kernel Layer
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generates

calls calls

Libraries
(Fortran)

OpenCL

with FortCL: https://github.com/stfc/FortCL

https://github.com/stfc/FortCL


OpenCL backend results

global_trans = KernelGlobalsToArguments()
ocl_trans = OCLTrans()

# Get the code we want to transform
schedule = psy.invokes.get('invoke_0').schedule

# Remove global variables from kernels
for kern in schedule.kernels():

global_trans.apply(kern)

# Transform the code to OpenCL
ocl_trans.apply(schedule)

# Specify OpenCL local size to improve
# performance
for kern in schedule.kernels():

kern.set_opencl_options({'local_size': 64})

$ psyclone –s ./ocl_trans.py nemolite2d.f90
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Ongoing work on C/C++ based backends

• EuroEXA: OpenCL can target FPGAs, but the generated code is 
substantially different than for other architectures, e.g: OpenCL 
tasks, HLS/Xilinx's pragmas, …

• Collaboration with ECP: New C++ frameworks provide good 
opportunities to ease the performance portability challenge. Is a 
PSyclone Kokkos backend a good solution?



EuroEXA

• PSyclone can already target FPGAs but current performance is not 
competitive with CPU/GPUs:

• Only 10-20% LUTs and FFs utilization on a Xilinx U200 FPGA. 
More parallelism need to be exposed in the OpenCL code.

• Next steps include using OpenCL Tasks instead of NDRanges.

• Multi-FPGA executions coming soon.



Collaboration with ECP

Objectives:

• Explore integration of ECP technology stack, particularly the 
Kokkos programming model.

• PSyclone is available on the Spack package manager.

• Share knowledge and best practices with the ECP partners.



Initial exploration with Kokkos

- Fully integrate with Kokkos (adopt View containers)

- Assume data duplication (Fortran Array <-> Views)

- Use all Kokkos functionality.

- Use UnmanagedViews and Kokkos Fortran interface

- Some Kokkos functionality like acceleration available but PSyclone still in 
charge of the data-layout.

- Use Kokkos with rawpointers from Fortran Arrays

- No automatic device acceleration or data-layout abstraction.

- We can still use Kokkos parallel execution model. 



Plans for C++ frameworks

Fortran C++ Kokkos

PSyclone

Algorithm Code
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Prepare all needed functionality with raw pointers and function wrappers and use a single 

Fortran C_ISO_BINDING call.



Issue: Unnecessary preventive data copies

Algorithm

field%get_element(i,j)

Psy-layer

// Preventive Synchronization

deep_copy(field_device, field);

PSyclone-generated



Lazy synchronisation to reduce data copies

Algorithm

field%get_element(i,j)

Psy-layer

// Synchronization instructions

field.get_element = func(i,j)

PSyclone-generated

double func(int i, int j){
if (data_on_device)

deep_copy(field_device, field);

return field[i][ j];

}



NemoLite2D manual implementations
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Take away

• Increasingly heterogenous hardware and software ecosystem 
in HPC.

• PSyclone currently supports CPU and GPU computing, we are 
developing basic support for FPGA computing.

• Initial work on supporting performance portable C++ 
programming models like Kokkos or SYCL.



Questions?

Read more about PSyclone and PSycloneBench at:

https://github.com/stfc/PSyclone

https://github.com/stfc/PSycloneBench

Contact: sergi.siso@stfc.ac.uk

https://github.com/stfc/PSyclone
https://github.com/stfc/PSycloneBench

