
Expanding PSyclone target languages to

leverage the wider HPC software ecosystem

Rupert Ford, Andy Porter, Sergi Siso, STFC Hartree Centre

Iva Kavcic, Chris Maynard, Andrew Coughtrie, UK Met Office

Joerg Henrichs, Australian Bureau of Meteorology

ESIWACE2 training course on Domain-specific Languages in Weather and

Climate, 23rd-27th November 2020

PSycloneBench
PSyclone Benchmarking suite available at https://github.com/stfc/PSycloneBench

• NemoLite2D
A vertically averaged version of the dynamical part of NEMO ported to the Gocean PSyclone
DSL. It has multiple manual implementations in different programming models for comparison
with the PSyclone-generated code.

• Shallow Water
Originally developed by Paul Swarztrauber of NCAR and is a 2D shallow-water model with
periodic boundary conditions in both dimensions.

• LFRic SMV
Multiple implementations of the matrix-vector multiplication operation done in the LFRic
application.

https://github.com/stfc/PSycloneBench

NemoLite2D

• Can be used by PSyclone with the GOcean DSL

• Has multiple manual implementations:

- Fortran: Serial, OpenMP, MPI and OpenACC

- C++: Serial, OpenMP, OmpSs, Kokkos

- OpenCL

- Regent

NemoLite2D Fortran Performance

0

20

40

60

80

100

120

140

Serial OpenMP MPI

ti
m

e
 (

s
e

c
o

n
d

s
)

Single node: 2 x Intel Xeon E5-2697A v4 (32 cores)
2048x2048, 100 iterations, gfortran, Intel MPI

Manual Implementations PSyclone PSyclone with inline transformation

After module-inlining

PSyclone matches or

improves manual

performance

NemoLite2D Fortran MPI Performance

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

32 64 128 256 512 1024 2048 4096 8192

ti
m

e
/s

te
p

s
 (

s
e

c
o

n
d

s
)

MPI ranks

Weak Scalability Plot ScafellPike
(32 core Intel Xeon E5-2697A v4 per node)

86% parallel efficiency

vs 32 ranks (1 node)

Heterogeneous hardware landscape

▪ Is Fortran with Directives alone
going to be enough?

Position Name Processor
Linpack

(TFlop/s)

#1 Fugaku Fujitsu A64FX 48C 415,530

#2 Summit IBM POWER9 22C

Nvidia V100

148,600

#3 Sierra IBM POWER9 22C

Nvidia V100

94,640

#4 Taihulight Sunway SW26010

260C

93,014

#5 Tianhe-2A Intel Xeon E5-2692v2

12C MATRIX-2000

61,444 Kokkos

Upcoming systems also with Intel and AMD processors and

accelerator architectures. Alternative architectures: FPGA,

RISCV, …

Vision

EUROEXA has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 754337

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

Hartree Centre – US Exascale Computing Project collaboration funded by STFC (UKRI)

Fortran-to-OpenCL example

Fortran

PSyclone

Algorithm Code
(Fortran)

Kernel Code
(Fortran)

Algorithm Layer Parallel System Layer Kernel Layer

is parsed by

generates

calls calls

Libraries
(Fortran)

OpenCL

with FortCL: https://github.com/stfc/FortCL

https://github.com/stfc/FortCL

OpenCL backend results

global_trans = KernelGlobalsToArguments()
ocl_trans = OCLTrans()

Get the code we want to transform
schedule = psy.invokes.get('invoke_0').schedule

Remove global variables from kernels
for kern in schedule.kernels():

global_trans.apply(kern)

Transform the code to OpenCL
ocl_trans.apply(schedule)

Specify OpenCL local size to improve
performance
for kern in schedule.kernels():

kern.set_opencl_options({'local_size': 64})

$ psyclone –s ./ocl_trans.py nemolite2d.f90
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Manual OpenACC PSyclone OpenCL

ti
m

e
 (

s
e

c
o

n
d

s
)

Nvidia V100
2048x2048, 100 iterations

pgi(OpenACC), gfortran (OpenCL)

bandwidth
roofline

Ongoing work on C/C++ based backends

• EuroEXA: OpenCL can target FPGAs, but the generated code is
substantially different than for other architectures, e.g: OpenCL
tasks, HLS/Xilinx's pragmas, …

• Collaboration with ECP: New C++ frameworks provide good
opportunities to ease the performance portability challenge. Is a
PSyclone Kokkos backend a good solution?

EuroEXA

• PSyclone can already target FPGAs but current performance is not
competitive with CPU/GPUs:

• Only 10-20% LUTs and FFs utilization on a Xilinx U200 FPGA.
More parallelism need to be exposed in the OpenCL code.

• Next steps include using OpenCL Tasks instead of NDRanges.

• Multi-FPGA executions coming soon.

Collaboration with ECP

Objectives:

• Explore integration of ECP technology stack, particularly the
Kokkos programming model.

• PSyclone is available on the Spack package manager.

• Share knowledge and best practices with the ECP partners.

Initial exploration with Kokkos

- Fully integrate with Kokkos (adopt View containers)

- Assume data duplication (Fortran Array <-> Views)

- Use all Kokkos functionality.

- Use UnmanagedViews and Kokkos Fortran interface

- Some Kokkos functionality like acceleration available but PSyclone still in
charge of the data-layout.

- Use Kokkos with rawpointers from Fortran Arrays

- No automatic device acceleration or data-layout abstraction.

- We can still use Kokkos parallel execution model.

Plans for C++ frameworks

Fortran C++ Kokkos

PSyclone

Algorithm Code
(Fortran)

Kernel Code
(Fortran)

Algorithm Layer
PSy

Layer
Kernel Layer

is parsed by

generates

calls calls

Libraries
(Fortran)

PSy

Layer

Prepare all needed functionality with raw pointers and function wrappers and use a single

Fortran C_ISO_BINDING call.

Issue: Unnecessary preventive data copies

Algorithm

field%get_element(i,j)

Psy-layer

// Preventive Synchronization

deep_copy(field_device, field);

PSyclone-generated

Lazy synchronisation to reduce data copies

Algorithm

field%get_element(i,j)

Psy-layer

// Synchronization instructions

field.get_element = func(i,j)

PSyclone-generated

double func(int i, int j){
if (data_on_device)

deep_copy(field_device, field);

return field[i][j];

}

NemoLite2D manual implementations

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

ti
m

e
(s

ec
o

n
d

s)

2 x Intel Xeon E5-2697A v4 (32c) 2 x AMD EPYC 7542 (64c) NVIDIA V100 AMD MI50

bandwidth
roofline

Take away

• Increasingly heterogenous hardware and software ecosystem
in HPC.

• PSyclone currently supports CPU and GPU computing, we are
developing basic support for FPGA computing.

• Initial work on supporting performance portable C++
programming models like Kokkos or SYCL.

Questions?

Read more about PSyclone and PSycloneBench at:

https://github.com/stfc/PSyclone

https://github.com/stfc/PSycloneBench

Contact: sergi.siso@stfc.ac.uk

https://github.com/stfc/PSyclone
https://github.com/stfc/PSycloneBench

