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Single node vs shared memory

▪ Distributed memory vs Shared memory
▪ Multi-node vs Single node

▪ Usually distributed memory ⇔ multi-node

▪ But, single node may have accelerators so perhaps not 
“shared memory”

▪ Want to get performance from single node
▪ Parallelism (cores), utilise accelerators, memory optimisations
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Overview

▪ 90 minute session
▪ Introduction then hands on tutorials
▪ Introduction

▪ ~25 minutes
▪ Hands on

▪ ~65 minutes
▪ 3 parts

▪ OpenMP
▪ OpenACC
▪ Sequential optimisations

▪ Any issues/questions on the slack channel
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Loops in LFRic PSy-layer

Alg

PSy

Kern

do i = 1, ncolumns
  call kern(... field%data ...)

Column of data

Field to column of data

Logically global field kern(... field ...)

Alg

PSyField to dofs

Logically global field

do i = 1, ndofs
  field%data(i) = ...

do k = 1, nlevels
  data(k+dofmap(...)) = ...

builtin(... field ...)

Coded
Kernel

Builtin
Kernel

ncells, 
nhalo(1)

ndofs, 
nannexed
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Loops in LFRic PSy-layer

▪ Exploit PSy-layer loop parallelism
▪  not functional parallelism at the moment

▪ Loop types: key features
▪ loop over cells

▪ If dist mem and continuous then halo(1) else ncells
▪ If continuous then inc access

▪ Loop iterations not independent
▪ If discontinuous then independent

▪ loop over dofs
▪ Loop iterations are independent (except reductions)
▪ If dist mem and continuous then annexed dofs
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Colouring
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Colouring
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do i = 1, ncells
  call kern ( … )

do colour = 1, ncolours
  do i = 1, ncolour(colour)
    call kern ( … )

sequential

parallel
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Colouring

▪ Future possibilities
▪ Blocked colouring
▪ Locks instead of colouring
▪ Loop over vertices (for lowest order)

Two threads
Threads 0 and 1
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Reductions in loops

do i = 1, n

  a = a + data(i)

end do

▪ Reproducibility
▪ Summing floating point numbers in different orders can produce 

different results
▪ Considered important to be able to have reproducible reductions

▪ Same code, same environment, same results
▪ Testing
▪ Debugging
▪ Requirement for some operational configurations

Partial sums,
Locking, ...
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Modifying kernels

▪ PSyclone creates PSyIR for the PSy-layer
▪ This is modified to add directives etc to improve performance
▪ Code is then output

▪ Might want to also modify existing kernel code
▪ Restructure for performance
▪ Add directives for parallelisation

▪ PSyclone also translates kernel code to PSyIR
▪ This can then be transformed
▪ Modified code can then be output
▪ This is relatively recent functionality



ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

OpenMP

▪ Parallelisation for multi or many core CPU(s)
▪ Well used and supported
▪ Mixed mode / MPI + X

▪ X = OpenMP

▪ OpenMP directives used (add via PSyclone transformations)
▪ PARALLEL - declares a parallel region of code
▪ DO - says to run a loop in parallel
▪ PARALLEL DO -> PARALLEL + DO
▪ DO and PARALLEL DO

▪ support reductions - not guaranteed to be reproducible
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OpenMP in practice
▪ PSyclone integrated into LFRic build system in September 

2015 - serial
▪ LFRic went parallel (MPI + OpenMP) in March 2016

▪ Switch was essentially immediate (but took 1 week in practice due 
to simple PSyclone OpenMP bug for reductions)

▪ No change to science code from serial to parallel
▪ Science development has continued since then (including 

adding Physics)
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OpenACC

▪ Parallelisation for GPU(s)
▪ Well used but only supported by one vendor
▪ Works for Fortran, help from NVIDIA
▪ Mixed mode / MPI + X

▪ X = OpenACC
▪ Early days!

▪ Partial functionality and bugs in implementations
▪ Other solutions?

▪ Plan to support OpenMP GPU directives as well
▪ Also see Sergi Siso’s presentation for what else we’re working on
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OpenACC

▪ OpenACC directives used (via PSyclone transformations)
▪ KERNELS - GPU region, compiler responsible to parallelise
▪ PARALLEL - GPU region, user responsible to parallelise
▪ LOOP - specify a loop is parallel (within KERNELS or PARALLEL)

▪ INDEPENDENT
▪ ENTER DATA - specify data to copy from CPU to GPU (only copy 

data that is not already on GPU)
▪ Avoids copying data between KERNELS and/or PARALLEL regions

▪ ROUTINE - specify subroutine (kernel) will be run on GPU
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OpenACC

▪ Manual matvec kernel 
results

▪ Time vs number of columns
▪ 2*16 core Skylake vs V100 

GPU
▪ Green is optimised OpenMP 

which is 2* faster than 
current implementation

▪ Purple is optimised 
OpenACC which is up to 2* 
faster than optimised 
OpenMP

Lower is better
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Sequential optimisations

▪ PSyclone transformation examples:

▪ Loop fusion in PSy-layer
▪ Only if loop bounds are the same
▪ Inc access can also stop fusion

▪ Constant values in kernels
▪ e.g. nlayers, ndofs
▪ Can help the compiler
▪ Optimised for a particular configuration

▪ Fortran intrinsics: matmul (matvec)
▪ Not available in other languages/representations
▪ Expose the looping to allow restructuring - GPU opt
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Hands on

▪ PSyclone transformation examples:
▪ ~65 minutes
▪ cd <psyclone_home>/tutorial/practicals/LFRic/single_node
▪ 3 parts 1_openmp, 2_openacc, 3_sequential
▪ No compilation, just code generation
▪ Follow README.md in each directory

▪ A browser will display README.md files nicely
▪ https://github.com/stfc/PSyclone/tree/master/tutoria

l/practicals/LFRic/single_node
▪ Any issues/questions on slack

▪ Use the psyclone channel
▪ Please use threads for replies

Have fun!

https://github.com/stfc/PSyclone/tree/master/tutorial/practicals/LFRic/single_node
https://github.com/stfc/PSyclone/tree/master/tutorial/practicals/LFRic/single_node

