
PSyclone LFRic distributed
memory support

Rupert Ford, Andy Porter, Sergi Siso, STFC Hartree Centre
Iva Kavcic, Chris Maynard, Andrew Coughtrie, UK Met Office

Joerg Henrichs, Australian Bureau of Meteorology

ESIWACE2 training course on Domain-specific Languages in
Weather and Climate, 23rd-27th November 2020

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

Overview

▪ 90 minute session
▪ Hands on part 1 : 15 minutes

▪ Going parallel
▪ Introduction to distributed memory : 30 minutes
▪ Hands on part 2 : 45 minutes

▪ 3 parts
▪ Annexed dofs
▪ Asynchronous comms
▪ Reductions

▪ Any issues/questions on the slack channel

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

Hands-on : Let’s go parallel

▪ 15 minutes
▪ cd <psyclone_home>/tutorial/practicals/LFRic/

distributed_memory/1_distributed_memory

▪ No compilation, just code generation
▪ Follow the README.md in the directory

▪ A browser will display README.md files nicely
▪ https://github.com/stfc/PSyclone/tree/master/tutorial/pract

icals/LFRic/distributed_memory/1_distributed_memory

▪ Any issues/questions on slack
▪ Use the psyclone channel
▪ Please use threads for replies

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

• Example code extracted from LFRic – most computationally costly part of
the dynamical core

• The same algorithm and kernel code written by the scientist is used to run
serially or in parallel
• Single-source science code
• Science code is not concerned with parallel implementation

• For a user, generating serial or distributed memory parallel code is
controlled by a single PSyclone command-line argument

Going parallel: Summary

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

• PSyclone integrated into LFRic build system in September 2015 - serial
• LFRic went parallel (MPI + OpenMP) in March 2016

• Switch was essentially immediate (but took 1 week in practice due to
simple PSyclone OpenMP bug for reductions)

• No change to science code from serial to parallel
• Science development has continued since then (including adding Physics)

Going parallel: In practice

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

Cells/Elements

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

Partitioned Cells/Elements

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

DOFs on discontinuous function space

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

Iterating over discontinuous DOFs

Iterate over dofs

DO i=1,ndofs
 ! builtin code

Accesses

read
write
readwrite

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

Iterating over cells with discontinuous
DOFs

Iterate over cells

DO i=1,ncells
 call kern(…)

Accesses

read
write
readwrite

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

Partitioned discontinuous DOFs

Iterate over dofs

DO i=1,ndofs
 ! builtin code

Iterate over cells

DO i=1,ncells
 call kern(…)

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

DOFs on a continuous function space

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

Iterating over continuous DOFs

Iterate over dofs

DO i=1,ndofs
 ! builtin code

Accesses

read
write
readwrite

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

Iterating over cells with continuous DOFs

Iterate over cells

DO i=1,ncells
 call kern(…)

Accesses

read
inc

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

Partitioned continuous DOFs

Iterate over dofs

DO i=1,ndofs
 ! builtin code

Owned
DOFs

Annexed
DOFs

1

ndofs

DOFs Numbering scheme

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

Partial sums

Iterate over cells

DO i=1,ncells
 call kern(…)

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

Redundant computation

Iterate over cells

DO i=1,cell_halo(1)
 call kern()

Owned
DOFs

1

ndofs

Annexed
DOFs

Halo
DOFs

Depth 1

DOFs Numbering scheme

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

Redundant computation

Iterate over cells

DO i=1,cell_halo(1)
 call kern()

Cells Numbering scheme

Owned
cells

Halo
Cells

Depth 1

1

ncells

cell_halo(1)

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

PSyIR view

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

Halo exchange logic

Loop 1
Writes to grad_p
1 to ndofs
Makes grad_p halo dofs “dirty”
Makes grad_p annexed dofs “dirty”
No reads
No halo exchange needed

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

Halo exchange logic

Loop 2
modifies grad_p [continuous?]
1 to cell_halo(1)
Makes grad_p halo depth 1 dofs “dirty”
Makes grad_p annexed dofs “clean”
Needs grad_p annexed dofs
Loop 1 makes them “dirty”
Halo exchange needed

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

Halo exchange logic

Loop 2
reads p, div_star, hb_inv
1 to cell_halo(1)
Halo exchange needed if halos are
“dirty”: runtime check

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

Runtime dirty flags

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

• LFRic either loops over cells or dofs
• If we iterate over cells, we always guarantee that the annexed dofs for a

modified continuous field will be clean due to redundant computation
• If we always redundantly compute annexed dofs when we iterate over dofs

there will be no additional halo exchanges required
• We have seen in example 1 that dirty annexed dofs may result in halo

exchanges
• So …
• Redundantly compute “annexed dofs” for the whole code then we can

assume that annexed dofs are always clean and potentially reduce the
number of halo exchanges

“Annexed dofs” optimisation

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

Partitioned continuous DOFs

Iterate over dofs

DO i=1,nannexed
 ! builtin code

Owned
DOFs

Annexed
DOFs

1

ndofs

DOFs Numbering scheme

nannexed

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

Annexed dofs: Halo exchange reduction

Number of
halo
exchanges

%
reduction

Description

63,668 LFRic Fallow Deer release
63,000 1% GH_INC : no halo exchange for increments
46,274 27% ANNEXED : redundantly compute annexed dofs
19,892 69% ANNEXED + GH_INC

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

• If you can’t avoid a halo exchange then you could try to overlap it with
computation

• PSyclone provides 2 transformations to help with this
1. A transformation that changes the default synchronous halo exchange

into an asynchronous halo exchange
2. A transformation that moves PSyIR nodes which, in this case, can be

used to make halo exchanges overlap with computation

Overlapping communication with
computation

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

• LFRic and PSyclone support two types of communication pattern
• nearest neighbour (stencil) communication patterns - halo exchanges
• Reductions

do i = 1, n

 a = a + data(i)

end do

Supporting reductions

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

● Now
○ Arbitrary depth redundant computation via a PSyclone transformation

● Future
○ Loop splitting (into internal computation and halo computation)
○ Communication aggregation
○ Eager (asynchronous) halo exchange protocol
○ Test working with partial sums and annexed dofs instead of redundant

computation in the halo?
○ Non-MPI based comms?

What else?

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

● ~45 minutes
● cd <psyclone_home>/tutorial/practicals/LFRic/distributed_memory

● 3 parts 2_annexed_dofs, 3_overlapping_comms, 4_reductions
● No compilation, just code generation
● Follow the README.md in the directories

○ A browser will display README.md files nicely
○ https://github.com/stfc/PSyclone/tree/master/tutorial/practical

s/LFRic/distributed_memory
● Any issues/questions on slack

○ Use the psyclone channel
○ Please use threads for replies

Have fun!

Hands on

https://github.com/stfc/PSyclone/tree/master/tutorial/practicals/LFRic/distributed_memory
https://github.com/stfc/PSyclone/tree/master/tutorial/practicals/LFRic/distributed_memory

