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Overview

▪ 90 minute session
▪ Hands on part 1 : 15 minutes

▪ Going parallel
▪ Introduction to distributed memory : 30 minutes
▪ Hands on part 2 : 45 minutes

▪ 3 parts
▪ Annexed dofs
▪ Asynchronous comms
▪ Reductions

▪ Any issues/questions on the slack channel
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Hands-on : Let’s go parallel

▪ 15 minutes
▪ cd <psyclone_home>/tutorial/practicals/LFRic/ 

distributed_memory/1_distributed_memory

▪ No compilation, just code generation
▪ Follow the README.md in the directory

▪ A browser will display README.md files nicely
▪ https://github.com/stfc/PSyclone/tree/master/tutorial/pract

icals/LFRic/distributed_memory/1_distributed_memory

▪ Any issues/questions on slack
▪ Use the psyclone channel
▪ Please use threads for replies
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• Example code extracted from LFRic – most computationally costly part of 
the dynamical core

• The same algorithm and kernel code written by the scientist is used to run 
serially or in parallel
• Single-source science code
• Science code is not concerned with parallel implementation

• For a user, generating serial or distributed memory parallel code is 
controlled by a single PSyclone command-line argument

Going parallel:  Summary
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• PSyclone integrated into LFRic build system in September 2015 - serial
• LFRic went parallel (MPI + OpenMP) in March 2016

• Switch was essentially immediate (but took 1 week in practice due to 
simple PSyclone OpenMP bug for reductions)

• No change to science code from serial to parallel
• Science development has continued since then (including adding Physics)

Going parallel: In practice
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Cells/Elements
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Partitioned Cells/Elements
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DOFs on discontinuous function space
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Iterating over discontinuous DOFs 

Iterate over dofs

DO i=1,ndofs
    ! builtin code

Accesses

read
write
readwrite
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Iterating over cells with discontinuous 
DOFs 

Iterate over cells

DO i=1,ncells
    call kern(…)

Accesses

read
write
readwrite
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Partitioned discontinuous DOFs

Iterate over dofs

DO i=1,ndofs
    ! builtin code

Iterate over cells

DO i=1,ncells
    call kern(…)
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DOFs on a continuous function space 
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Iterating over continuous DOFs 

Iterate over dofs

DO i=1,ndofs
    ! builtin code

Accesses

read
write
readwrite
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Iterating over cells with continuous DOFs 

Iterate over cells

DO i=1,ncells
    call kern(…)

Accesses

read
inc
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Partitioned continuous DOFs

Iterate over dofs

DO i=1,ndofs
    ! builtin code

Owned 
DOFs

Annexed 
DOFs

1

ndofs

DOFs Numbering scheme
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Partial sums

Iterate over cells

DO i=1,ncells
    call kern(…)
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Redundant computation

Iterate over cells

DO i=1,cell_halo(1)
    call kern()

Owned 
DOFs

1

ndofs

Annexed 
DOFs

Halo 
DOFs

Depth 1

DOFs Numbering scheme
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Redundant computation

Iterate over cells

DO i=1,cell_halo(1)
    call kern()

Cells Numbering scheme

Owned 
cells

Halo 
Cells

Depth 1

1

ncells

cell_halo(1)
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PSyIR view
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Halo exchange logic

Loop 1
Writes to grad_p
1 to ndofs
Makes grad_p halo dofs “dirty”
Makes grad_p annexed dofs “dirty”
No reads
No halo exchange needed
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Halo exchange logic

Loop 2
modifies grad_p [continuous?]
1 to cell_halo(1)
Makes grad_p halo depth 1 dofs “dirty”
Makes grad_p annexed dofs “clean”
Needs grad_p annexed dofs
Loop 1 makes them “dirty”
Halo exchange needed
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Halo exchange logic

Loop 2
reads p, div_star, hb_inv
1 to cell_halo(1)
Halo exchange needed if halos are 
“dirty”: runtime check
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Runtime dirty flags
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• LFRic either loops over cells or dofs
• If we iterate over cells, we always guarantee that the annexed dofs for a 

modified continuous field will be clean due to redundant computation
• If we always redundantly compute annexed dofs when we iterate over dofs 

there will be no additional halo exchanges required
• We have seen in example 1 that dirty annexed dofs may result in halo 

exchanges
• So …
• Redundantly compute “annexed dofs” for the whole code then we can 

assume that annexed dofs are always clean and potentially reduce the 
number of halo exchanges

“Annexed dofs” optimisation
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Partitioned continuous DOFs

Iterate over dofs

DO i=1,nannexed
    ! builtin code

Owned 
DOFs

Annexed 
DOFs

1

ndofs

DOFs Numbering scheme

nannexed
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Annexed dofs: Halo exchange reduction

Number of 
halo 
exchanges

% 
reduction

Description

63,668 LFRic Fallow Deer release
63,000 1% GH_INC : no halo exchange for increments
46,274 27% ANNEXED : redundantly compute annexed dofs
19,892 69% ANNEXED + GH_INC
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• If you can’t avoid a halo exchange then you could try to overlap it with 
computation

• PSyclone provides 2 transformations to help with this
1. A transformation that changes the default synchronous halo exchange 

into an asynchronous halo exchange
2. A transformation that moves PSyIR nodes which, in this case, can be 

used to make halo exchanges overlap with computation

Overlapping communication with 
computation
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• LFRic and PSyclone support two types of communication pattern
• nearest neighbour (stencil) communication patterns - halo exchanges
• Reductions

do i = 1, n

  a = a + data(i)

end do

Supporting reductions
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● Now
○ Arbitrary depth redundant computation via a PSyclone transformation

● Future
○ Loop splitting (into internal computation and halo computation)
○ Communication aggregation
○ Eager (asynchronous) halo exchange protocol
○ Test working with partial sums and annexed dofs instead of redundant 

computation in the halo?
○ Non-MPI based comms?

What else?
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● ~45 minutes
● cd <psyclone_home>/tutorial/practicals/LFRic/distributed_memory

● 3 parts 2_annexed_dofs, 3_overlapping_comms, 4_reductions
● No compilation, just code generation
● Follow the README.md in the directories

○ A browser will display README.md files nicely
○ https://github.com/stfc/PSyclone/tree/master/tutorial/practical

s/LFRic/distributed_memory
● Any issues/questions on slack

○ Use the psyclone channel
○ Please use threads for replies

Have fun!

Hands on

https://github.com/stfc/PSyclone/tree/master/tutorial/practicals/LFRic/distributed_memory
https://github.com/stfc/PSyclone/tree/master/tutorial/practicals/LFRic/distributed_memory

