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• For this exercise, you will implement a simple shallow water using dusk & dawn
• You will combine the FVM differential operators from a previous exercise (gradient & 

divergence) as well as a simple linear interpolation technique to simulate a dynamic 
system simulation evolving surface waves

• Please note that the method we are going to implement is going to be of low order and 
dissipative! It is not at all intended to highlight the state of the art in solving the shallow 
water equation etc.



Shallow Water Equations
In climate simulation / numerical weather prediction the governing equations for the evolution of 
gravity waves are usually given as:

● v: velocity [m/s]
● h: height of fluid [m]
● k: local unit vector pointing upward [-]
● f: Coriolis parameter [1/s]
● ξ: relative vorticity [1/s]
● K: kinetic energy per unit mass [J]



Shallow Water Equations
You stare at these equations for a while and realize that you don't want to deal with most of this 
stuff. Your friend that studies computer graphics assures you that these simplified equations are 
enough to simulate some waves

● v: velocity [m/s]
● h: height of fluid [m]
● g: gravitational constant

Layton & van de Panne
https://doi.org/10.1007/s003710100131

Note: different sources assume different sign 
for gravitational acceleration. Here we 
assume g ≃ -9.8

https://doi.org/10.1007/s003710100131


SWE - Differential Operators

Gradient

Divergence



SWE - Differential Operators

grad_vx = sum_over(Cell > Edge,...

div_v = sum_over(Cell > Edge,...



SWE - 
Algorithm 

1. init height field on Cells
2. init velocity field on Cells

1. save initial state
2. predictor

Time Stepper

1. compute gradient
   hC_x = sum_over(Edge>Cells, ...
2. compute divergence: 
   uvc_div = sum_over(Edge>Cells, ...

Spatial Derivatives 

compute time derivatives
   uC_t = Grav * hC_x...

Build Up Equations

3. corrector
   uC = uC_init + dt*uC_t

Time Stepper

Preprocess / Initialize
while:
t < tfinal

1. Enforce reflective velocity boundaries
2. Enforce zero gradient at boundary

Boundary Conditions



SWE - Algorithm 

will this work?

● all variables are co-located on the cells
● spatial derivatives propagate information from 

edges to cells
● edge values are never updated!

we need a means to update the edge values!

1. save initial state
2. predictor

Time Stepper

1. compute gradient
   hC_x = sum_over(Cell>Edge, ...
2. compute divergence: 
   uvc_div = sum_over(Cell>Edge, ...

Spatial Derivatives 

compute time derivatives
   uC_t = Grav * hC_x...

Build Up Equations

3. corrector
   uC = uC_init + dt*uC_t

Time Stepper

1. Enforce reflective velocity boundaries
2. Enforce zero gradient at boundary

Boundary Conditions



will this work?

● all variables are co-located on the cells
● spatial derivatives propagate information from 

edges to cells
● edge values are never updated!

we need a means to update the edge values!

Linearly interpolate cell values to edges

Interpolation

1. save initial state
2. predictor

Time Stepper

1. compute gradient
   hC_x = sum_over(Edge>Cells, ...
2. compute divergence: 
   uvc_div = sum_over(Edge>Cells, ...

Spatial Derivatives 

compute time derivatives
   uC_t = Grav * hC_x...

Build Up Equations

3. corrector
   uC = uC_init + dt*uC_t

Time Stepper

1. Enforce reflective velocity boundaries
2. Enforce zero gradient at boundary

Boundary Conditions

SWE - Algorithm 



SWE - Interpolation
● You have seen that the diffusion solver from the last exercise was very dissipative
● Part of the reason for this was the very primitive interpolation from the edges to the vertices, 

which was a simple average
● For this exercise, let's try to do a little bit better and use linear interpolation in instead of simple 

averaging

● The necessary weights were pre computed for you in the variable alpha
● The sum_over(Edge > Cell,...  primitive returns the cells in such a fashion that the first 

cell needs to be weighted by 1-alpha, the second by alpha



SWE - Boundary Conditions
The boundary conditions are again quite simple:

● The velocity is zero at the boundary; waves are reflected

● The surface gradient is zero at the boundaries



SWE - Final Algorithm

only implement this part this time around, time 
stepping is handled in the driver code!

Linearly interpolate cell values to edges

Interpolation

1. save initial state
2. predictor

Time Stepper

1. compute gradient
   hC_x = sum_over(Edge>Cells, ...
2. compute divergence: 
   uvc_div = sum_over(Edge>Cells, ...

Spatial Derivatives 

compute time derivatives
   uC_t = Grav * hC_x...

Build Up Equations

3. corrector
   uC = uC_init + dt*uC_t

Time Stepper

1. Enforce reflective velocity boundaries
2. Enforce zero gradient at boundary

Boundary Conditions



hC: Field[Cell], hC_t: Field[Cell] height field on cells, temporal derivative of height

field on cells

vC: Field[Cell], vC_t: Field[Cell] v component of velocity field on cells, temporal 

derivative of v component of velocity field on cells

uC: Field[Cell], uC_t: Field[Cell] u component of velocity field on cells, temporal 

derivative of u component of velocity field on cells

hC_x: Field[Cell], hC_y: Field[Cell] x and y component of height field gradient on cells

hE: Field[Edge] height field on edges

vE: Field[Edge], uE: Field[Edge] velocity field (u&v components) on edges

nx: Field[Edge], ny: Field[Edge] cell normals on edges (x and y component)

L: Field[Edge] edge lengths

alpha: Field[Edge] linear interpolation coefficients to interp from edge

to cell

Variable Reference I
An overview over all variables is given below. The ones in bold are out or "in-out" (both written to 
and being read from) variables. The others can be treated as read only. 



boundary_edges: Field[Edge] mask for boundary edges (true for boundary edges)

boundary_cells: Field[Cell] mask for boundary cells (true for boundary cells)

A: Field[Cell] area of cells

edge_orientation: Field[Cell > Edge] sparse dimension that can be used to flip each normal

locally outside. c.f. differential ops exercise

Grav: Field[Cell] gravitational constant

Variable Reference II
An overview over all variables is given below. The ones in bold are out or "in-out" (both written to 
and being read from) variables. The others can be treated as read only. 



• Hints are on the next slides
• Please consider them only if you're seriously stuck
• Some general hints are on the next slides, on the slide after that parts of the solution are 

revealed 

Hints



• dusk & dawn has no 2d (or 3d, for that matter) vector type (yet). u,v denote the two 
components of the vector v

• The gradient and divergence consume the geometric quantities given on the edges
− edge_orientation and L are used by both the gradient and the divergence
− the only difference between the _x and _y part of the gradient is the component of 

the normal they consume
• take care to use the correct signs when building up the ODEs

Hints



Hints - Skeleton
   with levels_downward:

       # lerp cell quantities to edges

       hE = 

       uE = 

       vE = 

       # boundary conditions on cells

       if (boundary_edges):

           uE = 0.

           vE = 0.

       # height field gradient

       hC_x = 

       hC_y = 

       # height field gradient is zero on the boundaries

       if (boundary_cells):

           hC_x = 0.

           hC_y = 0.

       # divergence of velocity field

       uvC_div = 

       # build ODE's

       uC_t = 

       vC_t = 

       hC_t = 


