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Parallel Model

● Let’s now see in detail how a dusk stencil is meant to be executed.
● The execution model (we also call it parallel model) presented here 

works as a contract with the (DSL) user.
● For each stencil, executing its generated code (which might be the 

result of various transformations and optimizations) must produce 
the same effects on output fields as the parallel model’s execution 
would when given the same inputs.

● The user thus doesn’t need to worry about what goes under the 
hood, as dusk&dawn promise that the generated code will behave 
equivalently to the parallel model’s execution.
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Parallel Model

Looking at the code in a top-down fashion, the first 
“nodes” we encounter are vertical domain regions.
These constitute blocks of codes which must be 
executed sequentially in the order in which they 
appear.

  ...
  with levels_upward:      
      ... 
  with levels_upward:      
      ...
  with levels_downward:      
      ... 
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Parallel Model

Within each region:
● Iterate sequentially through the k-levels (upward 

or downward, depending on the with levels_* 
statement).
○ Within each k iteration execute the statements 

(direct children) of the region sequentially in 
the order in which they appear. The execution 
of a statement can start only when the 
preceding ones have completed.

  ...
  with levels_upward:      
      STATEMENT1
      STATEMENT2
      STATEMENT3
      ...
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Parallel Model

Each statement (direct child) of the region is executed 
on each location of the horizontal domain (location type 
depends on the statement) in any order.

This makes it an embarrassingly parallel formulation, 
allowing dawn to produce code that runs on several 
threads.

  ...
  with levels_upward:      
      f_a = f_b
      with sparse[Cell > Edge]:
           f_sparse = f_edge * f_cell
      if condition:
           f_c = 5.0
      ...
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Parallel Model

This also means that statements containing 
substatements, such as if-then-else constructs and 
sparse loops, are to be considered atomic: they must be 
evaluated as a whole for each location.

  ...
  with levels_upward:      
      ...
      if f_c > 0.0:
           f_c = 0.0
      else:
           f_c = - f_c
      ...
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Parallel Model
@stencil
def copy(
  inF: Field[Edge, K], 
  inoutF: Field[Edge, K], 
  outF: Field[Edge, K]
):

   tempF: Field[Edge, K]

   with levels_upward as k:
       tempF = inF
       outF = tempF
       inoutF = inoutF + tempF

API fields (part of the contract with the user):
● Input: must not be changed
● Output: doesn’t matter what contained before, at the end 

of the stencil execution it must contain the correctly 
computed value

● Input-Output: same as output, but what contains at the 
beginning matters

Temporary fields (not part of the contract with the user):

Compiler has full leeway in what to do with them, e.g. keep or 
inline, …

The user should think of them as local “variables” with the scope 
of the stencil.
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Parallel Model
@stencil
def reduction(
  f: Field[Edge, K]
):

  with levels_upward:
    f = sum_over(
          Edge > Cell > Edge,
          f[Edge > Cell > Edge]
        )

In the right hand sides of assignments, value (copy) semantics 
apply to fields being read.
The value is the field as it was before the statement started 
being executed.

Important point, will be clear why you need this later on...
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We will now try to relax some constraints of the parallel model and highlight some 
criticalities that arise. This is to show what the compiler can/cannot do in order to 
optimize code.

Parallel Model: Execution Safety
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Remove sequentiality of k-loop iterations, allow any 
order. Opportunity to parallelize.

Parallel Model: Execution Safety
@stencil
def vertical(
  f: Field[Edge, K],
  g: Field[Edge, K]
):

  with levels_upward as k:
    f = f + f[k-1]

  with levels_upward as k:
    g = g + 1.0
    f = g[k-1]

  with levels_upward:
    f = g + 2.0

In general not possible when there are vertical data 
dependencies between statements (or of a statement 
with itself). But there are exceptions… (last slide)

Any other case is ok.
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Reference semantics on rhs instead of copy 
semantics. Accessing the actual field, as it is now.

This is dangerous because, depending on the order 
in which the statement is executed over the locations, 
the results change.
Think about swapping the order of sum_on_e2 and 
sum_on_e4.

An execution with multiple threads has exactly this 
kind of problem, which is called a race condition.

Copy semantics are the only safe option.

Parallel Model: Execution Safety
@stencil
def reduction(
  f: Field[Edge, K]
):
  with levels_upward:
    f = sum_over(
          Edge > Cell > Edge,
          f[Edge > Cell > Edge])
        

read
write

e0 e1

e2

e3 e4

e0 e1

e2

e3 e4

sum_on_e2 sum_on_e4
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Remove sequentiality of statements.
For example, a threaded execution of statements 
within a k iteration doesn’t guarantee the sequentiality 
of the statements inside.

Parallel Model: Execution Safety
@stencil
def reduction(
  f: Field[Edge, K],
  grad_curl_f: Field[Edge, K]
):

  curl_f: Field[Edge, K]

  with levels_upward:
    curl_f = 
       sum_over(Vertex > Edge, 
                f * geofac_curl)
    grad_curl_f = 
       sum_over(Edge > Vertex,
                curl_f, 
                weights=[-1.0, 1])
        

One thread 
executing 
these 
statements for 
each location.

Race condition!

read
write

e1

e3

e5

grad_curl_e3

e4

e0

v0

e1

e3

e5

curl_v0

e4

e0

v0
e2 e2

v1 v1
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To introduce vertical solvers, let’s 
start from the heat equation that 
we have to solve.

The focus here is to solve it along 
vertical columns of our domain, 
therefore we can directly look at 
the 1D heat equation.

Vertical Solvers
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Usually in NWP, along the vertical, a fully implicit discretization 
scheme (backward Euler for time and second-order central finite 
difference for space) is employed (always numerically stable):

Vertical Solvers

y

k

k+1

k-1

n: time point, k: vertical point
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Rearranging 
the recurrence 
equation:

Vertical Solvers

In matrix form:

Unknown
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A system of linear equations 
expressed through a 
tridiagonal matrix is solvable 
in linear time.

Vertical Solvers
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Thomas’ algorithm to solve 
tridiagonal system of equations.

Applied column-wise over the 
whole domain.

Vertical Solvers
@stencil
def TDMA(
 a: Field[Edge, K], b: Field[Edge, K], c: Field[Edge, K],
 d: Field[Edge, K], x: Field[Edge, K] ):

 g: Field[Edge, K]

 with levels_upward[0:0] as k:
   c = c / b
   d = d / b
 with levels_upward[1:] as k:
   g = 1.0 / (b - a * c[k-1])
   c = c * g
   d = (d - a * d[k-1]) * g
 with levels_downward[0:-1] as k:
   d -= c * d[k+1]
 with levels_upward:
   x = d

Forward sweep

Backward sweep
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Solver-like access: vertically offset access to 
value written by previous iteration of k-loop.
If there is at least 1 solver-like access: cannot 
parallelize k-loop.

Vertical Solvers

...
 with levels_upward[1:] as k:
   f = f + f[k-1]
 with levels_downward[0:-1] as k:
   g = g + g[k+1]

 with levels_upward[0:-1] as k:
   f = f + f[k+1]
 with levels_downward[1:] as k:
   g = g + g[k-1]

Stencil-like access: vertically offset access to 
value present before the k-loop.
If only stencil-like accesses: can parallelize 
k-loop.
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Q&A

Questions?
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Refresher

@stencil

def grad_n(f_n: Field[Edge], dualL: Field[Edge], f: Field[Cell]):

   with levels_downward:

       f_n = sum_over(Edge > Cell, f, weights=[1,-1]) / dualL

We have learned how to express basic stencil operators in dusk

@stencil

def divergence(vn: Field[Edge], L: Field[Edge], A: Field[Cell], edge_orientation: 

Field[Cell > Edge], div: Field[Cell]):

  with levels_downward:

div = sum_over(Cell > Edge, vn * L * edge_orientation) / A
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Combining operators

An typical PDE operator needs to be expressed as a combination of various basic stencil 
operators. 
E.g. the FVM vector laplacian:

In its discretized form:


