
155

Parallel Model

● Let’s now see in detail how a dusk stencil is meant to be executed.
● The execution model (we also call it parallel model) presented here

works as a contract with the (DSL) user.
● For each stencil, executing its generated code (which might be the

result of various transformations and optimizations) must produce
the same effects on output fields as the parallel model’s execution
would when given the same inputs.

● The user thus doesn’t need to worry about what goes under the
hood, as dusk&dawn promise that the generated code will behave
equivalently to the parallel model’s execution.

156

Parallel Model

Looking at the code in a top-down fashion, the first
“nodes” we encounter are vertical domain regions.
These constitute blocks of codes which must be
executed sequentially in the order in which they
appear.

 ...
 with levels_upward:
 ...
 with levels_upward:
 ...
 with levels_downward:
 ...

157

Parallel Model

Within each region:
● Iterate sequentially through the k-levels (upward

or downward, depending on the with levels_*
statement).
○ Within each k iteration execute the statements

(direct children) of the region sequentially in
the order in which they appear. The execution
of a statement can start only when the
preceding ones have completed.

 ...
 with levels_upward:
 STATEMENT1
 STATEMENT2
 STATEMENT3
 ...

158

Parallel Model

Each statement (direct child) of the region is executed
on each location of the horizontal domain (location type
depends on the statement) in any order.

This makes it an embarrassingly parallel formulation,
allowing dawn to produce code that runs on several
threads.

 ...
 with levels_upward:
 f_a = f_b
 with sparse[Cell > Edge]:
 f_sparse = f_edge * f_cell
 if condition:
 f_c = 5.0
 ...

159

Parallel Model

This also means that statements containing
substatements, such as if-then-else constructs and
sparse loops, are to be considered atomic: they must be
evaluated as a whole for each location.

 ...
 with levels_upward:
 ...
 if f_c > 0.0:
 f_c = 0.0
 else:
 f_c = - f_c
 ...

160

Parallel Model
@stencil
def copy(
 inF: Field[Edge, K],
 inoutF: Field[Edge, K],
 outF: Field[Edge, K]
):

 tempF: Field[Edge, K]

 with levels_upward as k:
 tempF = inF
 outF = tempF
 inoutF = inoutF + tempF

API fields (part of the contract with the user):
● Input: must not be changed
● Output: doesn’t matter what contained before, at the end

of the stencil execution it must contain the correctly
computed value

● Input-Output: same as output, but what contains at the
beginning matters

Temporary fields (not part of the contract with the user):

Compiler has full leeway in what to do with them, e.g. keep or
inline, …

The user should think of them as local “variables” with the scope
of the stencil.

161

Parallel Model
@stencil
def reduction(
 f: Field[Edge, K]
):

 with levels_upward:
 f = sum_over(
 Edge > Cell > Edge,
 f[Edge > Cell > Edge]
)

In the right hand sides of assignments, value (copy) semantics
apply to fields being read.
The value is the field as it was before the statement started
being executed.

Important point, will be clear why you need this later on...

162

We will now try to relax some constraints of the parallel model and highlight some
criticalities that arise. This is to show what the compiler can/cannot do in order to
optimize code.

Parallel Model: Execution Safety

163

Remove sequentiality of k-loop iterations, allow any
order. Opportunity to parallelize.

Parallel Model: Execution Safety
@stencil
def vertical(
 f: Field[Edge, K],
 g: Field[Edge, K]
):

 with levels_upward as k:
 f = f + f[k-1]

 with levels_upward as k:
 g = g + 1.0
 f = g[k-1]

 with levels_upward:
 f = g + 2.0

In general not possible when there are vertical data
dependencies between statements (or of a statement
with itself). But there are exceptions… (last slide)

Any other case is ok.

164

Reference semantics on rhs instead of copy
semantics. Accessing the actual field, as it is now.

This is dangerous because, depending on the order
in which the statement is executed over the locations,
the results change.
Think about swapping the order of sum_on_e2 and
sum_on_e4.

An execution with multiple threads has exactly this
kind of problem, which is called a race condition.

Copy semantics are the only safe option.

Parallel Model: Execution Safety
@stencil
def reduction(
 f: Field[Edge, K]
):
 with levels_upward:
 f = sum_over(
 Edge > Cell > Edge,
 f[Edge > Cell > Edge])

read
write

e0 e1

e2

e3 e4

e0 e1

e2

e3 e4

sum_on_e2 sum_on_e4

165

Remove sequentiality of statements.
For example, a threaded execution of statements
within a k iteration doesn’t guarantee the sequentiality
of the statements inside.

Parallel Model: Execution Safety
@stencil
def reduction(
 f: Field[Edge, K],
 grad_curl_f: Field[Edge, K]
):

 curl_f: Field[Edge, K]

 with levels_upward:
 curl_f =
 sum_over(Vertex > Edge,
 f * geofac_curl)
 grad_curl_f =
 sum_over(Edge > Vertex,
 curl_f,
 weights=[-1.0, 1])

One thread
executing
these
statements for
each location.

Race condition!

read
write

e1

e3

e5

grad_curl_e3

e4

e0

v0

e1

e3

e5

curl_v0

e4

e0

v0
e2 e2

v1 v1

166

To introduce vertical solvers, let’s
start from the heat equation that
we have to solve.

The focus here is to solve it along
vertical columns of our domain,
therefore we can directly look at
the 1D heat equation.

Vertical Solvers

167

Usually in NWP, along the vertical, a fully implicit discretization
scheme (backward Euler for time and second-order central finite
difference for space) is employed (always numerically stable):

Vertical Solvers

y

k

k+1

k-1

n: time point, k: vertical point

168

Rearranging
the recurrence
equation:

Vertical Solvers

In matrix form:

Unknown

169

A system of linear equations
expressed through a
tridiagonal matrix is solvable
in linear time.

Vertical Solvers

170

Thomas’ algorithm to solve
tridiagonal system of equations.

Applied column-wise over the
whole domain.

Vertical Solvers
@stencil
def TDMA(
 a: Field[Edge, K], b: Field[Edge, K], c: Field[Edge, K],
 d: Field[Edge, K], x: Field[Edge, K]):

 g: Field[Edge, K]

 with levels_upward[0:0] as k:
 c = c / b
 d = d / b
 with levels_upward[1:] as k:
 g = 1.0 / (b - a * c[k-1])
 c = c * g
 d = (d - a * d[k-1]) * g
 with levels_downward[0:-1] as k:
 d -= c * d[k+1]
 with levels_upward:
 x = d

Forward sweep

Backward sweep

171

Solver-like access: vertically offset access to
value written by previous iteration of k-loop.
If there is at least 1 solver-like access: cannot
parallelize k-loop.

Vertical Solvers

...
 with levels_upward[1:] as k:
 f = f + f[k-1]
 with levels_downward[0:-1] as k:
 g = g + g[k+1]

 with levels_upward[0:-1] as k:
 f = f + f[k+1]
 with levels_downward[1:] as k:
 g = g + g[k-1]

Stencil-like access: vertically offset access to
value present before the k-loop.
If only stencil-like accesses: can parallelize
k-loop.

172

Q&A

Questions?

173

Refresher

@stencil

def grad_n(f_n: Field[Edge], dualL: Field[Edge], f: Field[Cell]):

 with levels_downward:

 f_n = sum_over(Edge > Cell, f, weights=[1,-1]) / dualL

We have learned how to express basic stencil operators in dusk

@stencil

def divergence(vn: Field[Edge], L: Field[Edge], A: Field[Cell], edge_orientation:

Field[Cell > Edge], div: Field[Cell]):

 with levels_downward:

div = sum_over(Cell > Edge, vn * L * edge_orientation) / A

174

Combining operators

An typical PDE operator needs to be expressed as a combination of various basic stencil
operators.
E.g. the FVM vector laplacian:

In its discretized form:

