
Federal Department of Home Affairs FDHA
Federal Office of Meteorology and Climatology MeteoSwiss

dusk & dawn - Diffusion
Exercise
DSL Training Workshop

Exercises Powered By

atlas
https://github.com/ecmwf/atlas

https://github.com/ecmwf/atlas

Contents

• For this exercise, you will implement a simple diffusion solver using dusk & dawn
• You want to use Finite Differences, but your boss gave you a Finite Volume mesh
• You can work around this using the Neighbor Chain concept of dusk & dawn!

• Please note that the method we are going to implement is going to be of low order and
dissipative (simple averaging for interpolation)! It is not at all intended to highlight the
state of the art in solving diffusion equations etc.

Diffusion / Heat Equation
The evolution of a Temperature Field T in a homogeneous material with thermal diffusivity κ is
defined by the Heat equation:

● T: Temperature [°K]
● t: Time [s]
● κ: Thermal Diffusivity [m2/s]

Diffusion / Heat Equation
The evolution of a Temperature Field T in a homogeneous material with thermal diffusivity κ is
defined by the Heat equation:

● T: Temperature [°K]
● t: Time [s]
● κ: Thermal Diffusivity [m2/s]

temporal derivative → time stepper

spatial derivative → FD/FVM stencil

Discretization of the Laplacian
● We have seen how to compute the vector Laplacian on an FVM mesh in the last exercise
● For Cartesian coordinates, there is a simple connection between Laplacian and vector

Laplacian

● It turns out, the vector laplacian is just the laplacian of each of the vectors components
● However, the procedure outlined in the last exercise is not appropriate!

Discretization of the Laplacian - Convergence
Divergence Curl

c.f. Hui Wan - Developing and testing a hydrostatic
atmospheric dynamical core on triangular grids

http://hdl.handle.net/11858/00-001M-0000-0011-F84E-9
http://hdl.handle.net/11858/00-001M-0000-0011-F84E-9

Discretization of the Laplacian - Convergence

c.f. Hui Wan - Developing and testing a hydrostatic
atmospheric dynamical core on triangular grids

Vector Laplacian - FVM
Version

http://hdl.handle.net/11858/00-001M-0000-0011-F84E-9
http://hdl.handle.net/11858/00-001M-0000-0011-F84E-9

Discretization of the Laplacian - Convergence
● Error of the FVM vector Laplacian does not converge
● We have to use another formulation
● We know that the central Finite Difference approximation to the Laplacian has second order

Finite Differences
● Classic Finite Differences:

● Not immediately clear how to perform on a (triangular) FVM mesh

Zängl et. al https://doi.org/10.1002/qj.2378

● By using the Neighbor Chain concept you can
access the Vertex neighbors indicated with integers
1-4 on the right for each edge e

● This allows you to define a standard central Finite
Difference stencil on a triangular mesh:

Finite Differences on FVM Meshes

https://doi.org/10.1002/qj.2378

● In order for the method on the last slide to work, the temperature field needs to
be defined on the vertices as well as the edges

● Due to the nature of the proposed reduction, evolution in time is only possible on
edges (since only there 𝛻2T can be computed)

→Temperature needs to be interpolated from edges to vertices

Interpolation

Time Stepping
For this Exercise a very simple predictor / corrector time stepper is used:

Boundary Conditions
Boundary Conditions are as simple as possible: We just state that no heat may leave the
domain (perfect isolation):

TV: Field[Vertex] Temperature on Vertices

TE: Field[Edge], Temperature on Edges

TEinit: Field[Edge], Field to store initial value of Edge Temps

for time stepper

TE_t: Field[Edge], Temporal derivative of temperature

TEnabla2: Field[Edge], 𝛁T on Edges
inv_primal_edge_length: Field[Edge], 1/(0.5 * lp) in figure
inv_vert_vert_length: Field[Edge], 1/(0.5 * lvv) in figure
nnbhV: Field[Vertex], number of edge neighbors for each vertex

boundary_edge: Field[Edge], boundary edge mask (true if boundary edge)

kappa: Field[Edge], thermal diffusitivity constant

dt: Field[Edge] time step

Variable Reference
An overview over all variables is given below. The ones in bold are out or "in-out" (both written to
and being read from) variables. The others can be treated as read only.

• Hints are on the next slides
• Please consider them only if you're seriously stuck
• Some general hints are on the next slides, on the slides after that parts of the solution are

revealed

Hints

• To compute the Laplacian use sum_overThe geometric quantities are required to
compute the correct weights for the above operation

• Computing the laplacian requires two operations: the reduction over the neighbors as well
as subtracting the central contribution

Hints

Final Algorithm

1. Save old state of temperature (TEinit = …)
2. Execute Predictor step (TE = TEinit + …)
3. Interpolate Temperature from Edges to Nodes (TV = sum_over(....))
4. Compute 𝛻2T (TEnabla2 = …)
5. Enforce Boundary Conditions (if (boundary_edge): ….)
6. Build right hand side / f() (TE_t = ….)
7. Execute Corrector Step (TE = TEinit + ….)

Skeleton
 with levels_upward:

 # initialize

 TEinit = ...

 # predict

 TE = ...

 # interpolate temperature from edges to vertices

 TV = ...

 # compute nabla2 using the finite differences

 # build ODEs

 if (boundary_edge):

 TE_t = 0.

 else:

 TE_t = ...

