(7) Contents

- For this exercise, you will combine the operators you developed in the last exercise to compute yet another quantity from vector analysis
- This quantity is the Vector Laplacian
- You will notice that the approximation is of low order in this case. We will fix this in the next exercise

($)$ The Laplacian

- Takes a scalar function (scalar field) and returns a scalar
- Informally, the Laplacian of a function f at a point \mathbf{p} measures by how much the average value of f over small spheres or balls centered at \mathbf{p} deviates from $f(p)$.
- Very wide spread in lots of physical equations
- e.g. diffusion of chemical components, spread of heat in homogenous materials

© The Vector Laplacian

$$
\nabla^{2} \mathbf{v}=\nabla(\nabla \mathbf{v})=\nabla(\nabla \cdot \mathbf{v})-\nabla \times(\nabla \times \mathbf{v})
$$

- Takes a vector function (vector field) and returns a vector
- Also very relevant in physics, e.g. in the Navier Stokes Equation

$$
\rho\left(\frac{\partial \mathbf{v}}{\partial t}+(\mathbf{v} \cdot \nabla) \mathbf{v}\right)=\rho \mathbf{f}-\nabla p+\mu\left(\nabla^{2} \mathbf{v}\right) \begin{aligned}
& \text { f: body forces } \\
& \text { p: pressure } \\
& \text { mu: viscosity }
\end{aligned}
$$

- $\mu\left(\nabla^{2} \mathbf{v}\right)$ are the viscous stresses in the the fluid

(7) The Vector Laplacian

$$
\nabla^{2} \mathbf{v}=\nabla(\nabla \mathbf{v})=\nabla(\nabla \cdot \mathbf{v})-\nabla \times(\nabla \times \mathbf{v})
$$

- This form of the vector Laplacian is quite general
- There are more straightforward for Cartesian coordinates
- However, the normal component of the form above lends itself very well to implementation on a FVM mesh:

(7) The Vector Laplacian

$$
\nabla^{2}(\mathbf{v} \cdot \mathbf{n})=\operatorname{grad}_{n} \underbrace{[\nabla \cdot \mathbf{v}]}_{\text {divergence }}-\operatorname{grad}_{\tau} \underbrace{[\nabla \times \mathbf{v}]}_{\text {curl }}
$$

sketch triangular mesh

MeteoSwiss
directional gradient \mathbf{n}

directional gradient t

$$
\left\langle\nabla_{n} f\right\rangle_{e}=\frac{f\left(\mathbf{c}_{\mathbf{2}}\right)-f\left(\mathbf{c}_{1}\right)}{\hat{L}_{e}}\left\langle\nabla_{\tau} f\right\rangle_{e}=\frac{f\left(\mathbf{v}_{\mathbf{2}}\right)-f\left(\mathbf{v}_{\mathbf{1}}\right)}{L_{e}}
$$

© The Vector Laplacian

$$
\nabla^{2}(\mathbf{v} \cdot \mathbf{n})=\operatorname{grad}_{n} \underbrace{[\nabla \cdot \mathbf{v}]}_{\text {divergence }}-\operatorname{grad}_{\tau} \underbrace{[\nabla \times \mathbf{v}]}_{\text {curl }}
$$

－Divergence is located on cells
－Curl is located on vertices
\rightarrow Perfect fit to compute vector Laplacian of normal component of velocity on edges

MeteoSwiss

\oplus
 Geometrical Factors

- Just like for the computation of the curl and gradient, we again need geometrical factors to compute the directional gradients
- We need to make sure that the meshing library always returns the cell neighbor \mathbf{c}_{1} first ("in the direction of the normal"), and \mathbf{c}_{2} second ("in the opposite direction of the normal")
- The same argument goes for the tangential gradient
\rightarrow for the gradient along the normal the mesh has the correct property, no factor needed
\rightarrow for the gradient along the tangent a factor called tangent_orientation is given

\oplus
 Exercise

- For the exercise, you are about to re-use the divergence and curl operators you already implemented in the previous exercise
- The vector field is again made up of the spherical harmonics:

Field:

$$
\left\{\begin{array}{l}
u(x, y):=\frac{1}{4} \sqrt{\frac{105}{2 \pi}} \cos 2 x \cos ^{2} y \sin y, \\
v(x, y):=\frac{1}{2} \sqrt{\frac{15}{2 \pi}} \cos x \cos y \sin y .
\end{array}\right.
$$

\oplus
 Variable Reference

An overview over all variables is given below. The ones in bold are the ones you're supposed to be writing to. The others can be treated as read only.

```
u: Field[Edge], v: Field[Edge]
nx: Field[Edge], ny: Field[Edge]
L: Field[Edge]
A: Field[Cell]
uv_div: Field[Cell]
uv_curl: Field[Vertex]
grad_of_curl: Field[Edge]
grad_of_div: Field[Edge]
uv_nabla_2: Field[Edge]
L: Field[Edge] &
dualL: Field[Edge]
A: Field[Cell]
```

dualA: Field[Vertex] wiss

© Variable Reference

An overview over all variables is given below. The ones in bold are the ones you're supposed to be writing to. The others can be treated as read only.

```
```

tangent_orientation: Field[Edge] field indicating which tangential gradients need

```
```

tangent_orientation: Field[Edge] field indicating which tangential gradients need

```
to be flipped
```

to be flipped

```
to be flipped
sparse dimension that indicates which normals
sparse dimension that indicates which normals
sparse dimension that indicates which normals
need to be flipped for curl computation
need to be flipped for curl computation
need to be flipped for curl computation
sparse dimension that indicates which normals
sparse dimension that indicates which normals
sparse dimension that indicates which normals
need to be flipped for gradient / div
need to be flipped for gradient / div
need to be flipped for gradient / div
computation (+1/-1)
```

```
computation (+1/-1)
```

```
computation (+1/-1)
```

```
```

edge_orientation_vertex: Field[Vertex>Edge]

```
edge_orientation_vertex: Field[Vertex>Edge]
edge orientation cell: Field[Cell>Edge]
```

edge orientation cell: Field[Cell>Edge]

```

\section*{\(\pm \quad\) Hints}
- A few text hints are given on the next slide
- A skeleton of the solution is given on the last slide
- Please use it only if you're seriously stuck

\section*{\(\oplus\) Hints}
- The gradients are weighted reductions
- You only need to add three additional lines to the ops you have written before

\section*{\(\pm\) Hints}
```

with levels_upward as k:
\# compute curl (on vertices)
uv_curl =
\# compute divergence (on cells)
uv_div =
\# first term of of nabla2 (gradient of curl)
grad_of_curl =
\# second term of of nabla2 (gradient of divergence)
grad_of_div =
\# finalize nabla2 (difference between the two gradients)
uv_nabla2 =

```
```

