
1

Federal Department of Home Affairs FDHA
Federal Office of Meteorology and Climatology MeteoSwiss

Basic Operations on Unstructured Meshes

dusk & dawn - Basic
Concepts

2

Overview:
• Vertical Looping

− Execution Safety
• Type Consistency
• Reductions
• Conditionals

Basic Concepts

3

Vertical Looping

Structure of a dusk program

@stencil

def copy_on_vertex(input: Field[Vertex,K], output: Field[Vertex,K]):

 with levels_upward:

 output = input

Signature

4

Vertical Looping

Structure of a dusk program

@stencil

def copy_on_vertex(input: Field[Vertex,K], output: Field[Vertex,K]):

 with levels_upward:

 output = input

Vertical Domain / Loop Order

5

Vertical Looping

Structure of a dusk program

@stencil

def copy_on_vertex(input: Field[Vertex,K], output: Field[Vertex,K]):

 with levels_upward:

 output = input List of Statements

6

Vertical Looping

Structure of a dusk program

@stencil

def copy_on_vertex(input: Field[Vertex,K], output: Field[Vertex,K]):

 with levels_upward:

 output = input

Loop over the horizontal domain (implicit)
● Loops over Vertices in this case (since both

fields are on vertices)
● Always run in parallel

Loop over the vertical domain (explicit)
● loops over the columns
● dawn tries to emit parallel code for this loop

7

Vertical Looping
A closer look at the with levels_* statement

• every statement needs to be contained in a with levels_*
statement

• with levels_* statements may not be nested
@stencil

def copy_on_vertex(...):

 with levels_upward:

 output = input

8

Vertical Looping
A closer look at the with levels_* statement

• every statement needs to be contained in a with levels_*
statement

• with levels_* statements may not be nested
• the user may choose between levels_upward and

levels_downward , to indicate a loop starting either from the
lowest or or highest vertical level

@stencil

def copy_on_vertex(...):

 with levels_upward:

 output = input

 with levels_downward:

 output = input

9

Vertical Looping
A closer look at the with levels_* statement

• every statement needs to be contained in a with levels_*
statement

• with levels_* statements may not be nested
• the user may choose between levels_upward and

levels_downward , to indicate a loop starting either from the
lowest or or highest vertical level

• The iteration variable may be accessed by giving it a name,
e.g. k
− This can be used to read with an offset

@stencil

def copy_on_vertex(...):

 with levels_upward as k:

 output = input[k+1]

10

Vertical Looping
A closer look at the with levels_* statement

• every statement needs to be contained in a with levels_*
statement

• with levels_* statements may not be nested
• the user may choose between levels_upward and

levels_downward , to indicate a loop starting either from the
lowest or or highest vertical level

• The iteration variable may be accessed by giving it a name,
e.g. k
− This can be used to read with an offset
− Offset writes are prohibited!

@stencil

def copy_on_vertex(...):

 with levels_upward as k:

 output[k+1] = input

Illegal Code!

11

Vertical Looping
A closer look at the with levels_* statement

• every statement needs to be contained in a with levels_*
statement

• with levels_* statements may not be nested
• the user may choose between levels_upward and

levels_downward , to indicate a loop starting either from the
lowest or or highest vertical level

• The iteration variable may be accessed by giving it a name,
e.g. k
− This can be used to read with an offset
− Offset writes are prohibited!

• You can iterate on a slice of the vertical dimensions only
− The example on the right hand side would iterate from

the fifth level up to five levels from the top

@stencil

def copy_on_vertex(...):

 with levels_upward[5:-5] as k:

 output = input

12

Vertical Looping

dusk code

@stencil

def copy_on_vertex(input: Field[Vertex,K],

 output: Field[Vertex,K]):

 with levels_upward:

 output = input

for (k = 0; k < kmax; k++)

 for (vIdx = 0; vIdx < mesh.num_vertices(); vIdx++)

 output(vIdx, k) = input(vIdx, k)

serial pseudo code

dawn

13

Vertical Looping

dusk code

@stencil

def copy_on_vertex(input: Field[Vertex,K],

 output: Field[Vertex,K]):

 with levels_upward:

 output = input

parfor (k = 0; k < kmax; k++)

 parfor (vIdx = 0; vIdx < mesh.num_vertices(); vIdx++)

 output(vIdx, k) = input(vIdx, k)

parallel pseudo code

dawn

14

Vertical Looping

dusk code

@stencil

def copy_on_vertex(input: Field[Vertex,K],

 output: Field[Vertex,K]):

 with levels_upward:

 output = input

parfor (k = 0; k < kmax; k++)

 parfor (vIdx = 0; vIdx < mesh.num_vertices(); vIdx++)

 output(vIdx, k) = input(vIdx, k)

parallel pseudo code

dawn

15

Vertical Looping - Parallelization
• dawn will always try to emit parallel code for the vertical
• there are certain situations where this is not possible

− i.e. the code written necessitates serial execution of the vertical loop
− this happens for certain patterns of vertical offset reads

• For now assume that parallelization is always possible
− whether dusk program says levels_downward or levels_upward is of no

consequence (for now)
− you can safely assume that all exercises don't exhibit such patterns, you don't need to

touch the vertical iteration direction in any of them

16

Vertical Looping - Parallelization - Safety
Let's look at a pseudo code example:

So essentially you would like to shift each value one level downward along the vertical axis

for (k = 0; k < kmax-1; k++)

 for (cellIdx = 0; cellIdx < mesh.num_cells(); cellIdx++)

 inout(cellIdx, k) = inout(cellIdx, k+1)

17

Vertical Looping - Parallelization - Safety
Later you decide to parallelize this snippet. You come up with:

parfor (k = 0; k < kmax-1; k++)

 parfor (cellIdx = 0; cellIdx < mesh.num_cells(); cellIdx++)

 inout(cellIdx, k) = inout(cellIdx, k+1)

18

Vertical Looping - Parallelization - Safety
Later you decide to parallelize this snippet. You come up with:

• This is a race condition!
• Depending on whether inout(cellIdx, k+1) has already been written to by another thread, the

result will differ!

parfor (k = 0; k < kmax-1; k++)

 parfor (cellIdx = 0; cellIdx < mesh.num_cells(); cellIdx++)

 inout(cellIdx, k) = inout(cellIdx, k+1)

19

Vertical Looping - Parallelization - Safety
Later you decide to parallelize this snippet. You come up with:

• This is a race condition!
• Depending on whether inout(cellIdx, k+1) has already been written to by another thread, the

result will differ!

parfor (k = 0; k < kmax-1; k++)

 parfor (cellIdx = 0; cellIdx < mesh.num_cells(); cellIdx++)

 inout(cellIdx, k) = inout(cellIdx, k+1)

DANGEROUS
CODE

20

Lets try the same thing again in dawn:

• dawn is a parallelizing compiler. It knows about parallelization and its perils
• so we would either expect dawn to

− reject this code
− emit a stern warning that this is unsafe
− transform the code to be safe somehow
− …?

• let's see what happens!

Vertical Looping - Parallelization - Safety

@stencil

def shift(inout: Field[Cells,K]):

 with levels_upward as k:

 inout = inout[k+1]

21

Vertical Looping - Parallelization - Safety

@stencil

def shift(inout: Field[Cells,K]):

 with levels_upward as k:

 inout = inout[k+1]

inout_0 = new cell_field(...)

parfor (k = 0; k < kmax; k++)

 parfor (cIdx = 0; cIdx < mesh.num_cells(); cIdx++)

 inout_0(cIdx, k) = inout(cIdx, k)

sync() // wait for all threads

parfor (k = 0; k < kmax-1; k++)

 parfor (cIdx = 0; cIdx < mesh.num_cells(); cIdx++)

 inout(cIdx, k) = inout_0(cIdx, k+1)

parallel pseudo code

dawn

dusk code

22

So in summary
• dawn noticed the data dependency
• made a temporary copy of the input field

− this is called field versioning
• ensured that versioning the field was run in parallel
• and finally ran the shift safely in parallel

→ This is one of many situations where dawn emits correct code automatically that would require
re-engineering to run in parallel using conventional compilers

Vertical Looping - Parallelization - Safety

23

• As discussed, in Finite Volume Codes each variable is either located on a Cell, a Vertex or an
Edge.

• This fact is directly reflected in the dusk & dawn type system
• Any field may have a horizontal dimension, vertical dimension, or both

Actually, all simple types (more complex ones later) in dusk / dawn fit on this slide:
• Horizontal Field Types

• The Vertical Field Type

• "Full" Fields (Both Horizontal and Vertical Dimension)

Type System & Type Checking

vField: Field[Vertex], eField: Field[Edge], cField: Field[Cell]

vertField: Field[K]

vField3D: Field[Vertex,K], eField3D: Field[Edge,K], cField3D: Field[Cell,K]

24

• What about the individual entries of the fields?
− what is stored e.g. for each edge in a eField: Field[Edge]

• Currently, dawn only supports float, either in 32 or 64 bit precision
− controlled by a flag in driver code

• In the future, we want to support more primitive types (int, bool, …) as well as more complex
types such as (2d/3d) vectors
− for now, emulate vector fields using two (three) individual fields

vx: Field[Edge], vy: Field[Edge], (vz: Field[Edge])

Type System & Type Checking

25

• In summary, dusk & dawn types consist of
− dimensionality
− location

• dawn implements strict type checking to avoid errors
• in binary operations and assignments, the location of the left hand side needs to match the

location on the right hand side:

Type System & Type Checking

@stencil

def copy(input: Field[Edge],

 output: Field[Edge]):

 with levels_upward:

 output = input

dawn Code

26

• In summary, dusk & dawn types consist of
− dimensionality
− location

• dawn implements strict type checking to avoid errors
• in binary operations and assignments, the location of the left hand side needs to match the

location on the right hand side:

Type System & Type Checking

@stencil

def copy(input: Field[Edge],

 output: Field[Cell]):

 with levels_upward:

 output = input

dawn Type Error:
Assignment at line...

27

• In summary, dusk & dawn types consist of
− dimensionality
− location

• dawn implements strict type checking to avoid errors
• in binary operations and assignments, the location of the left hand side needs to match the

location on the right hand side:

Type System & Type Checking

@stencil

def add(lhs: Field[Edge],

 a: Field[Edge],

 b: Field[Edge]):

 with levels_upward:

 lhs = a + b

dawn Code

28

• In summary, dusk & dawn types consist of
− dimensionality
− location

• dawn implements strict type checking to avoid errors
• in binary operations and assignments, the location of the left hand side needs to match the

location on the right hand side:

Type System & Type Checking

@stencil

def add(lhs: Field[Edge],

 a: Field[Edge],

 b: Field[Cell]):

 with levels_upward:

 lhs = a + b

dawn Type Error:
Binary Op: Addition

29

• It's quite simple to ensure the same level of safety in any modern programming language
• However, model code is often written in unsafe manners, e.g.

• Would compile with no type error
• Would segfault (in the best case)
• Overwrite some other memory (in the worst case)
• (Types are checked at compile time, hence has no runtime impact)

Type System & Type Checking

double* lhs = new double[mesh.num_edges()];

double* a = new double[mesh.num_edges()];

double* b = new double[mesh.num_cells()];

for (int eIdx = 0; eIdx++ < mesh.num_edges(); eIdx++) {

 lhs[eIdx] = a[eIdx] + b[eIdx];

}

30

• It's quite simple to ensure the same level of safety in any modern programming language
• Sketch of safe version

Type System & Type Checking

edge_field* lhs = new edge_field(mesh.num_edges());

edge_field* a = new edge_field(mesh.num_edges());

cell_field* b = new cell_field(mesh.num_cells());

for (edge_iter eIter = mesh.edges().begin(); eIter != mesh.edges().end() ; eIter++) {

 lhs->at(eIter) = a->at(eIter) + b->at(eIter); //COMPILER ERROR!

}

31

We talked about location, what about dimensionality?
• For Assignments, consider the following table:

Type System & Type Checking

lhs\rhs 1D 2D 3D

3D

2D

1D

32

We talked about location, what about dimensionality?
• For Assignments, consider the following table:

Type System & Type Checking

1D = "vertical"
2D = "horizontal"

double* vert = new double[num_k];

double* hCells = new double[mesh.num_cells()];

lhs\rhs 1D 2D 3D

3D

2D

1D

33

We talked about location, what about dimensionality?
• For Assignments, consider the following table:

Type System & Type Checking

lhs\rhs 1D 2D 3D

3D

2D

1D

for (k = 0; k < kmax; k++)

 for (cIdx = 0; cIdx < mesh.num_cells(); cIdx++)

 cField3D(cIdx, k) = cField2D(cIdx)

for (k = 0; k < kmax; k++)

 for (cIdx = 0; cIdx < mesh.num_cells(); cIdx++)

 cField3D(cIdx, k) = cField1D(k)

34

We talked about location, what about dimensionality?
• For Assignments, consider the following table
• For Binary Operations all combinations are ok

Type System & Type Checking

35

We talked about location, what about dimensionality?
• For Assignments, consider the following table
• For Binary Operations all combinations are ok

Type System & Type Checking

for (k = 0; k < kmax; k++)

 for (cIdx = 0; cIdx < mesh.num_cells(); cIdx++)

 cField3D(cIdx, k) = cField2D(cidx) + cField1D(k)

@stencil

def dimensions(f3d: Field[Vertex,K],

 f2d: Field[Vertex], f1d: Field[K]):

 with levels_upward:

 f3d = f2d + f1d

dawn

36

So what can we do so far?
• We can copy fields around

− with vertical offset if desired
• We can do arithmetic on fields

… As long as the fields involved are all on the same location

Quick Recap

37

Q&A

Questions?

38

Compact Stencil
• The compact stencil is the basic numerical concept supported
• Roughly: "algebraic combination of values located at a central point and values located at

adjacent points"
• Possibly most well known from Finite Differences

39

Compact Stencil

h

40

Compact Stencil
• The compact stencil is the basic numerical concept supported
• Roughly: "algebraic combination of values located at a central point and values located at

adjacent points"
• Possibly most well known from Finite Differences
• On a Cartesian mesh the adjacent points can easily be addressed as we just have seen

• Not true on more general (FVM) Meshes

41

Consider a Conservation law

Intermission - The Most Basic FVM Computation

0

Assume u is constant over a small control volumes Ωi (u(t) → u in the following for legibility)

∇ of unknown quantity f → apply divergence theorem

42

Intermission - The Most Basic FVM Computation
∇ of unknown quantity f → apply divergence theorem

a few more basic manipulations

43

Intermission - The Most Basic FVM Computation

Discretize on a Finite Volume Mesh (e.g. triangular)

Cell Quantities Edge Quantities

44

Intermission - The Most Basic FVM Computation

Discretize on a Finite Volume Mesh (e.g. triangular)

Cell Quantities Edge Quantities

sum, but in more general terms, a reduction

45

Reductions
• Reductions are to FVM what stencils are to FD
• One of the most important, if not the most important, primitive in dawn
• Implemented as general as possible

− Stated goal: be able to map every FORTRAN reduction in the ICON dycore to dusk &
dawn reductions

• Reductions are closely linked to the concept of neighborhoods on unstructured / FVM meshes

46

Mesh: Vertices

47

Mesh: Edges

48

Mesh: Cells

49

Mesh: Neighbors

50

Neighbors: Vertex

51

Neighbors: Vertex -> Cell

52

Neighbors: Vertex -> Edge

53

Neighbors: Edge

54

Neighbors: Edge -> Cell

55

Neighbors: Edge -> Vertex

56

Neighbors: Cell

57

Neighbors: Cell -> Vertex

58

Neighbors: Cell -> Edge

59

Reductions - Neighborhood
• For now, there are the following six neighborhoods

− Vertex → Cell
− Vertex → Edge
− Edge → Cell
− Edge → Vertex
− Cell → Vertex
− Cell → Edge

• There are more general neighborhoods (later)
• The neighborhood is the first argument to the dusk reduce primitive

@stencil

def reduce(lhs: Field[Edge], rhs: Field[Cell]):

 with levels_downward:

 lhs = reduce_over(Cell > Edge, rhs, sum, init=0.0)

60

Reductions

@stencil

def reduce(lhs: Field[Edge], a: Field[Cell], b: Field[Cell]):

 with levels_downward:

 lhs = reduce_over(Edge > Cell, a+b, sum, init=0.0)

Neighborhood to iterate over

61

Reductions

@stencil

def reduce(lhs: Field[Edge], a: Field[Cell], b: Field[Cell]):

 with levels_downward:

 lhs = reduce_over(Edge > Cell, a+b, sum, init=0.0)

Operands - what to do on
each (edge) neighbor

62

Reductions

@stencil

def reduce(lhs: Field[Edge], a: Field[Cell], b: Field[Cell]):

 with levels_downward:

 lhs = reduce_over(Edge > Cell, a+b, sum, init=0.0)

Operator - how to "combine" the
values computed at the (cell)

neighbors (in this case sum up)

63

Reductions

@stencil

def reduce(lhs: Field[Edge], a: Field[Cell], b: Field[Cell]):

 with levels_downward:

 lhs = reduce_over(Edge > Cell, a+b, sum, init=0.0)

Initial Value - Value to start the
summation with

64

Reductions

@stencil

def reduce(lhs: Field[Edge], a: Field[Cell], b: Field[Cell]):

 with levels_downward:

 lhs = sum_over(Edge > Cell, a+b)

shorthand for reduce_over(Edge > Cell, …, sum, init = 0)

65

@stencil

def reduce(lhs: Field[Edge],

 a: Field[Cell],

 b: Field[Cell]):

 with levels_downward:

 lhs = sum_over(Edge > Cell, a+b)

Reduction - Animated Example

66

@stencil

def reduce(lhs: Field[Edge],

 a: Field[Cell],

 b: Field[Cell]):

 with levels_downward:

 lhs = sum_over(Edge > Cell, a+b)

Reduction - Animated Example

67

@stencil

def reduce(lhs: Field[Edge],

 a: Field[Cell],

 b: Field[Cell]):

 with levels_downward:

 lhs = sum_over(Edge > Cell, a+b)

Reduction - Animated Example

68

@stencil

def reduce(lhs: Field[Edge],

 a: Field[Cell],

 b: Field[Cell]):

 with levels_downward:

 lhs = sum_over(Edge > Cell, a+b)

Reduction - Animated Example

Run the stencil over the whole domain...

69

@stencil

def reduce(lhs: Field[Edge],

 a: Field[Cell],

 b: Field[Cell]):

 with levels_downward:

 lhs = sum_over(Edge > Cell, a+b)

Reduction - Animated Example

70

@stencil

def reduce(lhs: Field[Edge],

 a: Field[Cell],

 b: Field[Cell]):

 with levels_downward:

 lhs = sum_over(Edge > Cell, a+b)

Reduction - Animated Example

a+b

a+b

71

@stencil

def reduce(lhs: Field[Edge],

 a: Field[Cell],

 b: Field[Cell]):

 with levels_downward:

 lhs = sum_over(Edge > Cell, a+b)

Reduction - Animated Example

++

72

@stencil

def reduce(lhs: Field[Edge],

 a: Field[Cell],

 b: Field[Cell]):

 with levels_downward:

 lhs = sum_over(Edge > Cell, a+b)

Reduction - Emitted Pseudo Code

 parfor (eIdx = 0; eIdx < mesh.num_edges(); eIdx++)

for (cIdx : mesh.nbh_cells(eIdx))

 lhs(eIdx) += a(cidx) + b(cIdx)

dawn

73

parfor (k = 0; k < kmax; k++)

 parfor (eIdx = 0; eIdx < mesh.num_edges(); eIdx++)

for (cIdx : mesh.nbh_cells(eIdx))

 lhs(eIdx,k) += a(cidx,k) + b(cIdx,k)

@stencil

def reduce(lhs: Field[Edge,K],

 a: Field[Cell,K],

 b: Field[Cell,K]):

 with levels_downward:

 lhs = sum_over(Edge > Cell, a+b)

Reduction - Emitted Pseudo Code

dawn

74

Reductions - Using Weights
• Sometimes it is useful to scale each operand in a reduction by some weight
• The dusk reduction concept supports this idea using the optional keyword argument weights
• The following two snippets are equivalent

• Note that the user is responsible to ensure the weights vector is of the correct length. Here two
entries are appropriate since each edge has two cell neighbors

• Here, we didn't gain anything by using weights. Quite the contrary, one might argue that the
left hand version is clearer

@stencil

def reduce(lhs: Field[Edge], rhs: Field[Cell],

 w: Field[Edge]):

 with levels_downward:

 lhs = sum_over(Edge > Cell, rhs) / w

@stencil

def reduce(lhs: Field[Edge],

 rhs: Field[Cell], w: Field[Edge]):

 with levels_downward:

 lhs = sum_over(Edge > Cell, rhs,

 weights=[1/w, 1/w])

75

Reductions - Using Weights
So what are some more realistic / useful use cases for weighted reductions?

• Directional gradient along an edge normal

• Interpolation from two locations to one with pre-computed interpolation weights

• Becomes more useful with later advanced concepts

@stencil

def grad_n(f_n: Field[Edge], dualL: Field[Edge], f: Field[Cell]):

 with levels_downward:

 f_n = sum_over(Edge > Cell, f, weights=[1,-1]) / dualL

@stencil

def intp(fe: Field[Edge], alpha: Field[Edge], fc: Field[Cell]):

 with levels_downward:

 fe = sum_over(Edge > Cell, fc, weights=[1-alpha,alpha])

76

parfor (k = 0; k < kmax; k++) {

 parfor (eIdx = 0; eIdx < mesh.num_edges(); eIdx++) {

 weights = {1-alpha(eIdx, k),

 alpha(eIdx, k)}

 linear_idx = 0

for (cIdx : mesh.nbh_cells(eIdx)) {

 fe(eIdx,k) += fc(cidx,k)*weights[linear_idx]

linear_idx++

 }

 }

}

def intp(fe: Field[Edge,K],

 alpha: Field[Edge,K],

 fc: Field[Cell,K]):

 with levels_downward:

 fe = sum_over(Edge > Cell, fc,

 weights=[1-alpha,alpha])

Weighted Reduction - Emitted Pseudo Code

dawn

77

Reductions - Short Hands
We have already seen one shorthand notation:

There are two others to find the minimum and maximum

@stencil

def reduce(out: Field[Vertex], in: Field[Edge])

 with levels_downward:

 out = reduce_over(Vertex > Edge, in, sum, init=0)

 out = sum_over(Vertex > Edge, in)

@stencil

def reduce(out: Field[Vertex], in: Field[Edge])

 with levels_downward:

 out = min_over(Vertex > Edge, in)

 out = max_over(Vertex > Edge, in)

78

Conditionals & Control Flow
Often one wants to execute certain computations only if some conditions hold. Some simple
examples:

• boundary conditions
• only run a damping method in parts of the field which are oscillatory
• only perform computations in parts of a field which are given by a pre-computed mask

Just as in about any other programming language, this mechanism is realized using an if-then-else
concept:
@stencil

def control_flow(f: Field[Edge]):

 with levels_downward:

if f < 10:

 f = f + 10

else:

f = f + 5

for (eIdx = 0; cIdx < mesh.num_edges(); eIdx++)

 if(f[eIdx] < 10) {

f[eIdx] += 10

 } else {

f[eIdx] += 5

 }

dawn

79

Conditionals & Control Flow
Only caveat

• as stated dusk & dawn do not support boolean fields yet
• masks need to be emulated using floats
• probably the safest option is to use 0. for false and 1. for true

@stencil

def control_flow(f: Field[Edge], mask: Field[Edge]):

 with levels_downward:

if (mask == 1):

 f = f + 10

else:

f = f + 5

80

Wrap Up / Repetition
What can we do in dawn so far?

We can conveniently do arithmetic on fields

@stencil
def math(a: Field[Edge, K], b: Field[Edge, K], c: Field[Edge, K]):
 with levels_downward:
 a = b / c + 5

81

Wrap Up / Repetition
What can we do in dawn so far?

We can introduce control flow

@stencil
def bnd_cond(vx: Field[Edge, K], vy: Field[Edge, K], boundary_edges: Field[Edge, K]):
 with levels_downward:

if (boundary_edges == 1.):
vx = 0
vy = 0

else:
#evolve vx, vy

82

Wrap Up / Repetition
What can we do in dawn so far?

We can reduce from one location type to another

@stencil
def average(fc_avg: Field[Cell, K], fe: Field[Edge, K]):
 with levels_downward:

fc_avg = sum_over(Cell > Edge, fe) / 3 #3 edges per cell

83

Wrap Up / Repetition
What can we do in dawn so far?

We can weight these reductions

@stencil
def average(fc_avg: Field[Cell, K], fe: Field[Edge, K]):
 with levels_downward:

fc_avg = sum_over(Cell > Edge, fe, weights=[1/3, 1/3, 1/3]) #3 edges per cell

84

Wrap Up / Repetition
• dawn makes sure that the code can be run in parallel safely

− code that can not be run safely in parallel is emitted as sequential code1

• user needs to make sure that code is type consistent
− respect dimensionality / location
− dawn rejects inconsistent code

1) currently some edge cases are still rejected instead of emitted sequentially

85

Wrap Up / Repetition
• The combination of these concepts is already quite powerful
• Powerful enough in fact to compute various quantities in (vector) analysis: gradient,

divergence, …
→see exercise

• In the next session more advanced dusk & dawn concepts will be presented

86

Q&A

Questions?

