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1. What is the PSyIR
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PSyIR

• It is a language-independent Intermediate Representation.

• It is a mutable representation intended to be programmatically 
manipulated through transformations or PSyclone scripts.

• It is itself domain-agnostic, but it is extensible to create the 
domain-specific DSLs that will be used by the applications.



2. PSyIR structure and basic API



PSyIR Structure:
Abstract Syntax Tree with Scoped Symbol Tables

module mod
use library, only : sub

contains
subroutine work(arg)

real, intent(inout) :: arg
integer :: val

val = 3
call sub(val, SIN(arg + 2))

end subroutine work
end module mod
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Call
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mod: ContainerSymbol
sub: RoutineSymbol
library: ContainerSymbol
work: RoutineSymbol

arg: DataSymbol<real>
val: DataSymbol<integer>



Canonicalisation

• The PSyIR only has 1 branching and 1 looping node. Syntactic constructs like: 
else if, do while, select/switch, where… are converted to these building blocks.

if (x < 0) then
value = 1

else if ( x == 0) then
value = 2

else
value = 3

end if
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Visualization (the view() method)

Container

KernelSchedule

Assignment

Reference Literal

Call

Reference UnaryOp

BinaryOp

Reference Literal

mod: ContainerSymbol
sub: RoutineSymbol
library: ContainerSymbol
work: RoutineSymbol

arg: DataSymbol<real>
val: DataSymbol<integer>

Install the termcolor optional dependency to display colourised output



Navigation
• Homogeneous navigation:

.parent, .root, .children

• Searching methods:

walk(type), ancestor(type): to search down- and up-wards
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mod: ContainerSymbol
sub: RoutineSymbol
library: ContainerSymbol
work: RoutineSymbol

arg: DataSymbol<real>
val: DataSymbol<integer>



Navigation 2 • Semantic navigation:

(semantic properties depending on node kind)

- Assignments

- Conditionals (not in given example tree)

- Loops (not in given example tree)

Container

KernelSchedule

Assignment
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mod: ContainerSymbol
sub: RoutineSymbol
library: ContainerSymbol
work: RoutineSymbol

arg: DataSymbol<real>
val: DataSymbol<integer>



Symbol Table • All nodes can find their scope (and 
symbol table)

.scope

• Symbol tables recursively lookup 
symbols in parent symbol tables.

.lookup()

• Some nodes have references to 
relevant symbols

e.g .routine, .symbol
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Call
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mod: ContainerSymbol
sub: RoutineSymbol
library: ContainerSymbol
work: RoutineSymbol

arg: DataSymbol<real>
val: DataSymbol<integer>



Type System

• Import pre-defined Scalar Types:

• Create more complex types:

Kind: Scalar | Array | Structure | Deferred | Unknown Intrinsic Type Precision



Node Creation • Find accepted children

_children_valid_format

• Use constructor for leaf nodes an top-
down creation.

• Use .create() for Bottom-up creation.

Container

KernelSchedule

Assignment

Reference Literal

Call

Reference UnaryOp

BinaryOp

Reference Literal

mod: ContainerSymbol
sub: RoutineSymbol
library: ContainerSymbol
work: RoutineSymbol

arg: DataSymbol<real>
val: DataSymbol<integer>

Note: If possible avoid low-level manipulation of the AST and use 

transformations (shown later) 

Alternative to parse existing code



CodeBlocks

• The PSyIR CodeBlock node contains unrecognised language-specific blocks 
of source code.

• Similarly, the UnknownType provides a solution for unrecognized type 
declarations.



Transformations

• List available transformations

• Validate and Apply transformations

Avoid manual manipulations of the AST by using the available transformations

Currently TransInfo() being refactored, check for transformation in the following locations:

from psyclone.psyir.transformations import <transformation_name>
from psyclone.transformations import <transformation_name>
from psyclone.domain.<API_NAME>.transformations import transformation_name



3. How PSyclone uses the PSyIR



How PSyclone currently uses the PSyIR

▪ No PSyIR Support yet.

▪ Existing code modified by PSyclone

▪ PSyIR with specialised domain-specific nodes and parallel constructs:
▪ Directive, GlobalSum, HaloExchange, CodedKern, InlineKern, BuiltInKern, …
▪ These classes are currently not compatible with the PSyIR backends but can generate the 

equivalent Fortran.

▪ Code fully-generated by PSyclone

▪ Full PSyIR support.

▪ Existing code modified by PSyclone

Algorithm

Parallel 

System

Kernels



Fortran-to-OpenCL example
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Note: More on OpenCL and other languages in the Wednesday talk “Expanding 

PSyclone target languages to leverage the wider HPC software ecosystem”



PSyIR in PSyclone Scripts

$ psyclone –s ./psyclone_script.py algorithm.f90
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Kernel 

PSyIR



A complete example (part 1)



A complete example (part 2)



A complete example (part 3)



Current capabilities overview
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Take Away

• PSyIR is the Internal Representation at the core of PSyclone.

• It is mutable to allow HPC experts to encode optimization steps by 
applying transformations or directly interacting with its API.

• It is language-independent to allow the generation of output source-
code in multiple programming languages.

• A list of Transformations are provided for easy manipulation of the code.



Questions?

Read more about PSyIR at:

https://psyclone.readthedocs.io/en/latest/psyir.html

Contact: sergi.siso@stfc.ac.uk


