
PSyIR: The PSyclone Internal

Representation
Rupert Ford, Andy Porter, Sergi Siso, STFC Hartree Centre

Iva Kavcic, Chris Maynard, Andrew Coughtrie, UK Met Office

Joerg Henrichs, Australian Bureau of Meteorology

ESIWACE2 training course on Domain-specific Languages in Weather and

Climate, 23rd-27th November 2020

Overview

1. What is the PSyIR

2. PSyIR structure and basic API

3. How PSyclone uses the PSyIR

1. What is the PSyIR

Vision

EUROEXA has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 754337

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

Hartree Centre – US Exascale Computing Project collaboration funded by STFC (UKRI)

PSyclone workflow

PSyIR
Fortran

Code

Fortran

Backend

Transforms

PSyIR

Transformations

DSL Application

Frontend

Fortran

Code

Embedded DSL with the

scientific domain knowledge

Parallelisation and optimisation encoded as

‘recipes’ (Python scripts).

PSyIR

• It is a language-independent Intermediate Representation.

• It is a mutable representation intended to be programmatically
manipulated through transformations or PSyclone scripts.

• It is itself domain-agnostic, but it is extensible to create the
domain-specific DSLs that will be used by the applications.

2. PSyIR structure and basic API

PSyIR Structure:
Abstract Syntax Tree with Scoped Symbol Tables

module mod
use library, only : sub

contains
subroutine work(arg)

real, intent(inout) :: arg
integer :: val

val = 3
call sub(val, SIN(arg + 2))

end subroutine work
end module mod

Container

KernelSchedule

Assignment

Reference Literal

Call

Reference UnaryOp

BinaryOp

Reference Literal

mod: ContainerSymbol
sub: RoutineSymbol
library: ContainerSymbol
work: RoutineSymbol

arg: DataSymbol<real>
val: DataSymbol<integer>

Canonicalisation

• The PSyIR only has 1 branching and 1 looping node. Syntactic constructs like:
else if, do while, select/switch, where… are converted to these building blocks.

if (x < 0) then
value = 1

else if (x == 0) then
value = 2

else
value = 3

end if

IF

BinaryOp

Reference Literal

Schedule

Assignment

Reference Literal

Schedule

BinaryOp

Reference Literal

IF

Schedule

Assignment

Reference Literal

Schedule

Assignment

Reference Literal

condition

if_body
else_bodycondition

if_body
else_body

Visualization (the view() method)

Container

KernelSchedule

Assignment

Reference Literal

Call

Reference UnaryOp

BinaryOp

Reference Literal

mod: ContainerSymbol
sub: RoutineSymbol
library: ContainerSymbol
work: RoutineSymbol

arg: DataSymbol<real>
val: DataSymbol<integer>

Install the termcolor optional dependency to display colourised output

Navigation
• Homogeneous navigation:

.parent, .root, .children

• Searching methods:

walk(type), ancestor(type): to search down- and up-wards

Container

KernelSchedule

Assignment

Reference Literal

Call

Reference UnaryOp

BinaryOp

Reference Literal

mod: ContainerSymbol
sub: RoutineSymbol
library: ContainerSymbol
work: RoutineSymbol

arg: DataSymbol<real>
val: DataSymbol<integer>

Navigation 2 • Semantic navigation:

(semantic properties depending on node kind)

- Assignments

- Conditionals (not in given example tree)

- Loops (not in given example tree)

Container

KernelSchedule

Assignment

Reference Literal

Call

Reference UnaryOp

BinaryOp

Reference Literal

mod: ContainerSymbol
sub: RoutineSymbol
library: ContainerSymbol
work: RoutineSymbol

arg: DataSymbol<real>
val: DataSymbol<integer>

Symbol Table • All nodes can find their scope (and
symbol table)

.scope

• Symbol tables recursively lookup
symbols in parent symbol tables.

.lookup()

• Some nodes have references to
relevant symbols

e.g .routine, .symbol

Container

KernelSchedule

Assignment

Reference Literal

Call

Reference UnaryOp

BinaryOp

Reference Literal

mod: ContainerSymbol
sub: RoutineSymbol
library: ContainerSymbol
work: RoutineSymbol

arg: DataSymbol<real>
val: DataSymbol<integer>

Type System

• Import pre-defined Scalar Types:

• Create more complex types:

Kind: Scalar | Array | Structure | Deferred | Unknown Intrinsic Type Precision

Node Creation • Find accepted children

_children_valid_format

• Use constructor for leaf nodes an top-
down creation.

• Use .create() for Bottom-up creation.

Container

KernelSchedule

Assignment

Reference Literal

Call

Reference UnaryOp

BinaryOp

Reference Literal

mod: ContainerSymbol
sub: RoutineSymbol
library: ContainerSymbol
work: RoutineSymbol

arg: DataSymbol<real>
val: DataSymbol<integer>

Note: If possible avoid low-level manipulation of the AST and use

transformations (shown later)

Alternative to parse existing code

CodeBlocks

• The PSyIR CodeBlock node contains unrecognised language-specific blocks
of source code.

• Similarly, the UnknownType provides a solution for unrecognized type
declarations.

Transformations

• List available transformations

• Validate and Apply transformations

Avoid manual manipulations of the AST by using the available transformations

Currently TransInfo() being refactored, check for transformation in the following locations:

from psyclone.psyir.transformations import <transformation_name>
from psyclone.transformations import <transformation_name>
from psyclone.domain.<API_NAME>.transformations import transformation_name

3. How PSyclone uses the PSyIR

How PSyclone currently uses the PSyIR

▪ No PSyIR Support yet.

▪ Existing code modified by PSyclone

▪ PSyIR with specialised domain-specific nodes and parallel constructs:
▪ Directive, GlobalSum, HaloExchange, CodedKern, InlineKern, BuiltInKern, …
▪ These classes are currently not compatible with the PSyIR backends but can generate the

equivalent Fortran.

▪ Code fully-generated by PSyclone

▪ Full PSyIR support.

▪ Existing code modified by PSyclone

Algorithm

Parallel

System

Kernels

Fortran-to-OpenCL example

Fortran

PSyclone

Algorithm Code
(Fortran)

Kernel Code
(Fortran)

Algorithm Layer Parallel System Layer Kernel Layer

is parsed by

generates

calls calls

Libraries
(Fortran)

OpenCL

Note: More on OpenCL and other languages in the Wednesday talk “Expanding

PSyclone target languages to leverage the wider HPC software ecosystem”

PSyIR in PSyclone Scripts

$ psyclone –s ./psyclone_script.py algorithm.f90

PSy-layer

PSyIR

Kernel

PSyIR

A complete example (part 1)

A complete example (part 2)

A complete example (part 3)

Current capabilities overview

Direct PSyIR creation

fparser Fortran
(LFRic, GOcean and NEMO

DSLs use this frontend)

Fortran
(most mature backend)

OpenCL
(only GOcean kernels)

SIR
(only NEMO)

C
(only to support OpenCL)

Frontend / Creation Backends

Take Away

• PSyIR is the Internal Representation at the core of PSyclone.

• It is mutable to allow HPC experts to encode optimization steps by
applying transformations or directly interacting with its API.

• It is language-independent to allow the generation of output source-
code in multiple programming languages.

• A list of Transformations are provided for easy manipulation of the code.

Questions?

Read more about PSyIR at:

https://psyclone.readthedocs.io/en/latest/psyir.html

Contact: sergi.siso@stfc.ac.uk

