
1

Federal Department of Home Affairs FDHA
Federal Office of Meteorology and Climatology MeteoSwiss

Highlighting performance optimization schemes to
apply when compiling unstructured DSL stencils

Performance

2

Overview:
• Some background on GPUs
• Baseline
• Possible optimizations
• Case study: ICON’s “diamond” stencil
• State of performance optimization in Dawn

Performance

3

• NWP codes are strongly data-level parallel. We therefore see GPUs as the
hardware that fits best our needs, as they are throughput-oriented.

• We entirely focus our optimization efforts on producing performant CUDA
code.

• Dawn IIR’s structure reflects specific needs of the general principles of a
vector processor.

• Follows a short (and extremely simplified!) refresher of GPU architectures
(using NVIDIA terminology) and some GPU optimization hints.

GPUs

4

In few words:
• SIMT: Spawn a lot of threads executing concurrently a block of code =

kernel
• But also SIMD: same instruction on several data at once
• Warp = granularity of SIMD: vector of 32 threads, which execute the same

instruction in lock-step
• Synchronization (between all the threads) at the end of the kernel

GPUs simplified

5

GPUs: parallelizing a loop

for(int i=0; i < MAX; ++i) {

 a[i] = b[i];

}

__global__ void copy_kernel(double *a, double *b) {

 int pidx = ...

 if(pidx < MAX)

 a[pidx] = b[pidx];

}

void run() {

 ...

 copy_kernel<<<1 + MAX / BLOCK_SIZE, BLOCK_SIZE>>>

 (a_gpu, b_gpu);

}

K
er

ne
l

C
P

U
 c

od
e

Threads are uniquely indexed, use that index to map memory.

6

GPUs: warp execution

...

0 1 31

...

32 33 63

...

64 65 95

...

96 97 127Threads:

Warp 0 Warp 1 Warp 2 Warp 3

Code:
a = a + 5
b = a
...

Data
dependency

Showing a very simplified example of
warp scheduling.

Threads within each warp must execute
the same instruction simultaneously.

A Warp Scheduler selects which warp
goes into execution from a pool of
ready-to-go warps: those for which the
next instructions have the operands
available (data dependencies resolved).

(Divergence due to conditionals is not
considered in this presentation)

7

GPUs: warp execution

Warp 0 a = a + 5

time

Warp 1 a = a + 5

Warp 2 a = a + 5

Warp 3 a = a + 5

Warp 0 b = a

Warp 1 b = a

Warp 2 b = a

Warp 3 b = a

STALL due to latency

Code:
a = a + 5
b = a
...

Data
dependency

128 threads (4 warps)

8

GPUs: latency hiding (more threads)

Warp 0 a = a + 5

time

Warp 1 a = a + 5

Warp 2 a = a + 5

Warp 3 a = a + 5

Warp 0 b = a

Warp 1 b = a

Warp 2 b = a

Warp 3 b = a

Warp 4 a = a + 5

Warp 5 a = a + 5

Warp 6 a = a + 5

Warp 7 a = a + 5

256 threads (8 warps)

Code:
a = a + 5
b = a
...

Data
dependency

Warp 4 b = a

Warp 5 b = a

Warp 6 b = a

Warp 7 b = a

STALL due to latency

9

GPUs: latency hiding (ILP)

Warp 0 a = a + 5

time

Warp 1 a = a + 5

Warp 2 a = a + 5

Warp 3 a = a + 5

Warp 0 b = a

Warp 1 b = a

Warp 2 b = a

Warp 3 b = a

Code:
a = a + 5
c = c + 2
b = a
...

Data
dependency

Warp 0 c = c + 2

Warp 1 c = c + 2

Warp 2 c = c + 2

Warp 3 c = c + 2

128 threads (4 warps)

STALL due to latency

10

GPUs: memory

• Per-thread registers: fast but limited
• Main memory (and caches): slow
• … (not relevant for our analysis)

Accessing (load/store) main memory efficiently requires some
considerations, e.g. minimizing the number of memory transactions...

11

GPUs: access coalescing

GPU tries to coalesce loads/stores of a warp (32 threads) into as few as possible transactions…
but transactions span consecutive segments of memory.

Sequential access pattern: sequential
threads in a warp access memory that
is sequential.

If instead accesses are strided ...

...

...

12

GPUs: memory hierarchy

Main memory (RAM)

Caches

Registers
● Lowest latency
● Highest bandwidth
● Extremely limited capacity

● Highest latency
● Lowest bandwidth
● Enormous capacity

Middle ground… but closer to registers.
Working principle: temporarily holds data that are likely
to be reused.

load
store

13

Efficiency of caches (how likely a datum is going to be found already in cache),
depends on the validity of (at least) one of the following statistical assumptions

GPUs: locality

Temporal locality: recently accessed memory locations are
likely to be accessed again in the near future

Spatial locality (also data locality): memory locations with
addresses close to those of recently accessed ones are likely
to be accessed in the near future.
Works because data is transferred between main memory
and caches in contiguous blocks.

time 0

time 1, 2,
...

time 0

time
1

time
2

14

We guarantee to the user who wrote this Dusk stencil
that the resulting generated code will be the
equivalent (in terms of effects on output fields) of:

• While iterating sequentially through the k-levels
from bottom to top,
− Copying field_a over the whole horizontal

domain into field_b, then
− Copying field_b over the whole horizontal

domain into field_c.

Contract with the user (parallel model)
@stencil

def my_stencil(

 field_a: Field[Edge, K],

 field_c: Field[Edge, K]

) -> None:

 field_b: Field[Edge, K]

 with levels_upward:

 field_b = field_a

 field_c = field_b

15

• Assumption: there are no vertical data
dependencies between statements.

• We choose our baseline to be very
close to the parallel model. That is:
producing one CUDA kernel per
statement of the original Dusk code
and repeating the k-loop inside each
kernel.

• 1 CUDA thread will perform the
computation for one location (in this
case one edge) of the dense
“iteration” space.

Baseline: 1 CUDA kernel per statement
__global__ void stmt_1_kernel(double *field_a, double *field_b) {

 for(unsigned k = 0; k < K_SIZE; ++k) {

 unsigned idx = k * NUM_EDGES + pidx;

 field_b[idx] = field_a[idx];

 }

}

__global__ void stmt_2_kernel(double *field_b, double *field_c) {

 for(unsigned k = 0; k < K_SIZE; ++k) {

 unsigned idx = k * NUM_EDGES + pidx;

 field_c[idx] = field_b[idx];

 }

}

void run(double *field_a, double *field_b, double *field_c) {

 ...

 stmt_1_kernel<<<1 + NUM_EDGES / BLOCK_SIZE, BLOCK_SIZE>>>

 (field_a_gpu, field_b_gpu);

 stmt_2_kernel<<<1 + NUM_EDGES / BLOCK_SIZE, BLOCK_SIZE>>>

 (field_b_gpu, field_c_gpu);

}

16

Fields as multidimensional arrays linearly stored in row-major order.
• Dense fields: dense[k_idx][dense_idx]
• Sparse fields: sparse[k_idx][sparse_idx][dense_idx]

Since we parallelize over the dense iteration space, to always obtain coalesced
accesses we must have the dense (edge/vertex/cell) dimension as last.

Baseline: Memory organization

17

Spare iterations (reductions or sparse loop
statements) are translated into for loops.

At each iteration we need to query a neighbor
table which, given the current dense index
and neighbor number, gives the index of the
current neighbor in the mesh.

A neighbor table is organized in memory as
table[dense_idx][neighbor_iter]

Baseline: Sparse iterations

__global__ void sparse_stmt_kernel(...) {

 for(unsigned k = 0; k < K_SIZE; ++k) {

 ...

 for (int nbhIter = 0; nbhIter < C_E_SIZE; ++nbhIter)

 {

 int nbhIdx = ceTable[pidx * C_E_SIZE + nbhIter];

 ...

 }

 ...

 }

}

Example on Cell > Edge iteration space:

Index of current
cell

Neighbor number
(0, 1 or 2)

Index of current
edge neighbor

18

Overview on the Roofline model

Compute bound

Mem
ory

 bo
un

d

Operational intensity [FLOPS/byte]

Performance [GFLOPS/s] Stencil-like computations are (sometimes
heavily) memory bound.
Some of the optimizations we devised aim at
mitigating the limits imposed by memory
bandwidth by increasing the operational
intensity (reducing overall memory traffic).

Another very good way to gain performance is
to hide latency. In this case, memory traffic
remains the same.

Peak
performance

19

Questions so far?

Q&A

20

10 minutes

Small break

21

Most simple case: same iteration space (edges) and no data dependencies.
Major benefit: hiding latency. Also gain from avoiding kernel-level synchronization and
from sharing loop over k-levels. Op. intensity unchanged.

Optimization: fusing dense “loops”
@stencil

def my_stencil(

 field_a: Field[Edge, K],

 field_b: Field[Edge, K],

 field_c: Field[Edge, K],

 field_d: Field[Edge, K]

) -> None:

 with levels_upward:

 field_b = field_a + 1.0

 field_d = field_c + 2.0

__global__ void fused_kernel(double *field_a, double *field_b,

 double *field_c, double *field_d) {

 for(unsigned k = 0; k < K_SIZE; ++k) {

 unsigned idx = k * NUM_EDGES + pidx;

 field_b[idx] = field_a[idx] + 1.0;

 field_d[idx] = field_c[idx] + 2.0;

 }

}

void run(double *field_a, double *field_b,

 double *field_c, double *field_d) {

 ...

 fused_kernel<<<NUM_EDGES*K_SIZE/BLOCK_SIZE, BLOCK_SIZE>>>

 (field_a_gpu, field_b_gpu, field_c_gpu, field_d_gpu);

}

22

Same case as before, just changed the second assignment into a reduction.

Optimization: fusing dense “loops”
__global__ void fused_kernel(...) {

 ... // e.g. loop over k

 field_b[k * NumEdges + pidx] =

 field_a[k * NumEdges + pidx] + 1.0;

 double sum = 0.0;

 for (int nbhIter = 0; nbhIter < E_V_SIZE; nbhIter++) {

 int nbhIdx = evTable[pidx * E_V_SIZE + nbhIter];

 sum += field_c[k * NumVertices + nbhIdx];

 }

 field_d[k * NumEdges + pidx] = sum;

 ...

}

@stencil

def my_stencil(

 field_a: Field[Edge, K],

 field_b: Field[Edge, K],

 field_c: Field[Vertex, K],

 field_d: Field[Edge, K]

) -> None:

 with levels_upward:

 field_b = field_a + 1.0

 field_d = sum_over(Edge > Vertex,

 field_c)

23

Case: same iteration space (edges) and non-offset data dependency.
On top of benefits of previous case, here we also spare the memory accesses to
field_b (temporary). Op. intensity increased.

Optimization: fusing dense “loops”
@stencil

def my_stencil(

 field_a: Field[Edge, K],

 field_c: Field[Edge, K]

) -> None:

 field_b: Field[Edge, K]

 with levels_upward:

 field_b = field_a

 field_c = field_b

__global__ void fused_kernel(double *field_a, double *field_c) {

 ... // e.g. loop over k

 double local_field_b = field_a[k * NumEdges + pidx];

 field_c[k * NumEdges + pidx] = local_field_b;

 ...

}

24

Same case as before, just changed the first assignment into a reduction.

Optimization: fusing dense “loops”
@stencil

def my_stencil(

 field_a: Field[Vertex, K]

 field_c: Field[Edge, K]

) -> None:

 field_b: Field[Edge, K]

 with levels_upward:

 field_b = sum_over(Edge > Cell > Vertex,

 field_a)

 field_c = field_b + 1.0

__global__ void fused_kernel(double *field_a, double *field_c) {

 ... // e.g. loop over k

 double sum = 0.0;

 for (int nbhIter = 0; nbhIter < E_C_V_SIZE; nbhIter++) {

 int nbhIdx = ecvTable[pidx * E_C_V_SIZE + nbhIter];

 sum += field_a[k * NumVertices + nbhIdx];

 }

 double local_field_b = sum;

 field_c[k * NumEdges + pidx] = local_field_b + 1.0;

 ...

}

25

Same case as before, now second assignment is a reduction instead.
Notice that field_b is still accessed non-offset from within the reduction, because it’s on
edges.

Optimization: fusing dense “loops”
@stencil

def my_stencil(

 field_a: Field[Edge, K],

 field_c: Field[Cell, K],

 field_d: Field[Edge, K]

) -> None:

 field_b: Field[Edge, K]

 with levels_upward:

 field_b = field_a + 1.0

 field_d = sum_over(Edge > Cell,

 field_b * field_c)

__global__ void fused_kernel(...) {

 ... // e.g. loop over k

 double local_field_b = field_a[k * NumEdges + pidx] + 1.0;

 double sum = 0.0;

 for (int nbhIter = 0; nbhIter < E_C_SIZE; nbhIter++) {

 int nbhIdx = ecTable[pidx * E_C_SIZE + nbhIter];

 sum += local_field_b * field_c[k * NumCells + nbhIdx];

 }

 field_d[k * NumEdges + pidx] = sum;

 ...

}

26

Also when there’s an offset data dependency we can get rid of accesses to temporary
field_b and remove its pre-computation.
Similar benefits of fusing dense loops with non-offset data dependencies.
Op. intensity increased.

Optimization: one-time stencil inlining
@stencil

def my_stencil(

 field_a: Field[Vertex, K],

 field_c: Field[Edge, K]

) -> None:

 field_b: Field[Vertex, K]

 with levels_upward:

 field_b = field_a + 1.0

 field_c = sum_over(Edge > Vertex,

 field_b)

__global__ void fused_kernel(double *field_a, double *field_c) {

 ... // e.g. loop over k

 double sum = 0.0;

 for (int nbhIter = 0; nbhIter < E_V_SIZE; nbhIter++) {

 int nbhIdx = evTable[pidx * E_V_SIZE + nbhIter];

 double local_field_b = field_a[k * NumVertices + nbhIdx] + 1.0;

 sum += local_field_b;

 }

 field_c[k * NumEdges + pidx] = sum;

 ...

}

27

Same optimization. Now first statement is a reduction.
Need to nest reduction loops in the generated code.

Optimization: one-time stencil inlining
@stencil

def my_stencil(

 field_a: Field[Vertex, K],

 field_c: Field[Edge, K]

) -> None:

field_b: Field[Cell, K]

with levels_upward:

 field_b = sum_over(Cell > Vertex,

 field_a)

 field_c = sum_over(Edge > Cell,

 field_b)

__global__ void fused_kernel(double *field_a, double *field_c) {

 ... // e.g. loop over k

 double sum_0 = 0.0;

 for (int nbhIter_0 = 0; nbhIter_0 < E_C_SIZE; nbhIter_0++) {

 int nbhIdx_0 = ecTable[pidx * E_C_SIZE + nbhIter_0];

 double sum_1 = 0.0;

 for (int nbhIter_1 = 0; nbhIter_1 < C_V_SIZE; nbhIter_1++) {

 int nbhIdx_1 = cvTable[nbhIdx_0 * C_V_SIZE + nbhIter_1];

 sum_1 += field_a[k * NumVertices + nbhIdx_1];

 }

 double local_field_b = sum_1;

 sum_0 += local_field_b;

 }

 field_c[k * NumEdges + pidx] = sum_0;

 ...

}

28

Can fuse reductions on same iteration space (here Vertex > Edge).
Multiple benefits, sharing: accesses to input fields in common, accesses to the
neighbor table and the loop over neighbors. Op. intensity increased.

Optimization: fusing reductions
@stencil

def my_stencil(

 field_a: Field[Edge, K],

 field_b: Field[Edge, K],

 field_c: Field[Edge, K],

 field_d: Field[Vertex, K],

 field_e: Field[Vertex, K]

) -> None:

 with levels_upward:

 field_d = sum_over(Vertex > Edge,

 field_a * field_b)

 field_e = sum_over(Vertex > Edge,

 field_a * field_c)

__global__ void fused_kernel(...) {

 ... // e.g. loop over k

 double sum_d = 0.0;

 double sum_e = 0.0;

 for (int nbhIter = 0; nbhIter < V_E_SIZE; nbhIter++) {

 int nbhIdx = veTable[pidx * V_E_SIZE + nbhIter];

 double local_field_a = field_a[k * NumEdges + nbhIdx];

 sum_d += (local_field_a * field_b[k * NumEdges + nbhIdx]);

 sum_e += (local_field_a * field_c[k * NumEdges + nbhIdx]);

 }

 field_d[k * NumVertices + pidx] = sum_d;

 field_e[k * NumVertices + pidx] = sum_e;

 ...

}

29

@stencil

def my_stencil(

 field_a: Field[Edge, K],

 field_b: Field[Vertex, K],

 field_c: Field[Edge, K],

 field_d: Field[Vertex, K],

 field_sparse: Field[Vertex > Edge, K]

) -> None:

 with levels_upward:

 with sparse[Vertex > Edge]:

 field_sparse = field_a * field_b

 field_d = sum_over(Vertex > Edge,

 field_b * field_c)

Can fuse 2 sparse loops or a sparse loop with a reduction.
Same benefits as previous optimization.

Optimization: fusing also sparse loops
__global__ void fused_kernel(...)

{

 ... // e.g. loop over k

 double sum = 0.0;

 double local_field_b = field_b[k * NumVertices + pidx];

 for (int nbhIter = 0; nbhIter < V_E_SIZE; nbhIter++) {

 int nbhIdx = veTable[pidx * V_E_SIZE + nbhIter];

 field_sparse[k*V_E_SIZE*NumVertices + nbhIter*NumVertices + pidx] =

 field_a[k * NumEdges + nbhIdx] *

 local_field_b;

 sum += (local_field_b * field_c[k * NumEdges + nbhIdx]);

 }

 field_d[k * NumVertices + pidx] = sum;

 ...

}

30

Data dependency between loops being fused. Saving also accesses to
field_sparse. This corresponds to inlining the computation of field_sparse.

Optimization: fusing also sparse loops
@stencil

def my_stencil(

 field_a: Field[Edge, K],

 field_b: Field[Vertex, K],

 field_c: Field[Edge, K],

 field_d: Field[Vertex, K]

) -> None:

 field_sparse: Field[Vertex > Edge, K]

 with levels_upward:

 with sparse[Vertex > Edge]:

 field_sparse = field_a * field_b

 field_d = sum_over(Vertex > Edge,

 field_sparse * field_c)

__global__ void fused_kernel(double *field_a, double *field_b,

 double *field_c, double *field_d)

{

 ... // e.g. loop over k

 double sum = 0.0;

 for (int nbhIter = 0; nbhIter < V_E_SIZE; nbhIter++) {

 int nbhIdx = veTable[pidx * V_E_SIZE + nbhIter];

 double local_field_sparse = field_a[k * NumEdges + nbhIdx] *

 field_b[k * NumVertices + pidx];

 sum += (local_field_sparse * field_c[k * NumEdges + nbhIdx]);

 }

 field_d[k * NumVertices + pidx] = sum;

 ...

}

31

Temporary is inlined multiple times.
Under some circumstances, it can
improve performance.
Benefits of this transformation are
not captured by the Roofline model.

Optimization: recurrent stencil inlining
...

 field_b: Field[Vertex, K]

 with levels_upward:

 field_b = field_a + 1.0

 field_c = sum_over(Edge > Vertex,

 field_b)

 field_d = sum_over(Cell > Vertex,

 field_b)

__global__ void fused_kernel_1(double *field_a, double *field_c) {

 ... // e.g. loop over k

 double sum = 0.0;

 for (int nbhIter = 0; nbhIter < E_V_SIZE; nbhIter++) {

 int nbhIdx = evTable[pidx * E_V_SIZE + nbhIter];

 double local_field_b = field_a[k * NumVertices + nbhIdx] + 1.0;

 sum += local_field_b;

 }

 field_c[k * NumEdges + pidx] = sum;

__global__ void fused_kernel_2(double *field_a, double *field_d) {

 ... // e.g. loop over k

 double sum = 0.0;

 for (int nbhIter = 0; nbhIter < C_V_SIZE; nbhIter++) {

 int nbhIdx = cvTable[pidx * C_V_SIZE + nbhIter];

 double local_field_b = field_a[k * NumVertices + nbhIdx] + 1.0;

 sum += local_field_b;

 }

 field_d[k * NumCells + pidx] = sum;

 ...

}

32

Ignoring effects of cache and of indexing pattern (explained later on).

Optimization: recurrent stencil inlining
...

 field_b: Field[Vertex, K]

 with levels_upward:

 field_b = field_a + 1.0

 field_c = sum_over(Edge > Vertex,

 field_b)

 field_d = sum_over(Cell > Vertex,

 field_b)

...

 with levels_upward:

 field_c = sum_over(Edge > Vertex,

 field_a + 1.0)

 field_d = sum_over(Cell > Vertex,

 field_a + 1.0)

vs.

2 memory accesses per vertex +
3 memory accesses per edge +
7 memory accesses per cell

0 memory accesses per vertex +
3 memory accesses per edge +
7 memory accesses per cell

33

Ignoring effects of cache and of indexing pattern (explained later on).

Optimization: recurrent stencil inlining
...

 field_tmp: Field[Vertex, K]

 with levels_upward:

 field_tmp = (field_a + field_b + field_c)**2

 field_d = sqrt(field_tmp + 5.0)

 field_e = sum_over(Edge > Vertex,

 field_tmp * 4.0)

 field_f = field_tmp / 2.0

...

 with levels_upward:

 field_d = sqrt((field_a + field_b + field_c)**2 + 5.0)

 field_e = sum_over(Edge > Vertex,

 (field_a + field_b + field_c)**2 + 5.0)

 field_f = (field_a + field_b + field_c)**2 / 2.0

vs.

8 memory accesses per vertex +
3 memory accesses per edge

8 memory accesses per vertex +
7 memory accesses per edge

34

Optimization: recurrent stencil inlining

In this case the temporary is a sparse field.

...

 field_tmp: Field[Edge > Vertex, K]

 with levels_upward:

 with sparse[Edge > Vertex]:

 field_tmp = (field_edge * field_vert1)**2

 field_x = sum_over(Edge > Vertex,

 field_vert2 + field_tmp)

 field_y = sum_over(Edge > Vertex,

 field_x * field_tmp)

...

 with levels_upward:

 field_x = sum_over(Edge > Vertex,

 field_vert2 + (field_edge * field_vert1)**2)

 field_y = sum_over(Edge > Vertex,

 field_x * (field_edge * field_vert1)**2)

vs.

14 memory accesses per edge 11 memory accesses per edge

35

Short digression:
The optimizations presented so far tend to increase the number of necessary
hardware registers per thread, as a natural consequence of keeping memory
transactions to the minimum.
At some point registers will be spilled into main memory!
How much can we fuse kernels together until it’s not convenient anymore?
Clearly we need to keep an eye on register pressure.

Limitations: register pressure

36

@stencil

def my_stencil(

 field_a: Field[Vertex, K],

 field_b: Field[Cell, K],

 field_c: Field[Vertex, K],

 field_d: Field[Cell, K]

) -> None:

 with levels_upward:

 field_b = sum_over(Cell > Vertex,

 field_c)

 field_c = field_a + 1.0

 field_d = sum_over(Cell > Vertex,

 field_a * field_c)

Limitations: data dependencies

Would like to fuse these 2 statements
together in the same kernel, because
they are both on cells.

37

@stencil

def my_stencil(

 field_a: Field[Vertex, K],

 field_b: Field[Cell, K],

 field_c: Field[Vertex, K],

 field_d: Field[Cell, K]

) -> None:

 with levels_upward:

 field_b = sum_over(Cell > Vertex,

 field_c)

 field_c = field_a + 1.0

 field_d = sum_over(Cell > Vertex,

 field_a * field_c)

Limitations: data dependencies

WAR

RAW

Can’t. There is a write-after-read
dependency between first and second
statements and a read-after-write
dependency between second and
third.

38

Assumption: order of iteration over k-levels doesn’t matter.
1 CUDA thread will perform the computation for one location (here edge) and for one k level.
More threads: helps in hiding latency. Op. intensity unchanged.

Optimization: parallelize k-loop
@stencil

def my_stencil(

 field_a: Field[Edge, K],

 field_b: Field[Edge, K]

) -> None:

 with levels_upward:

 field_b = field_a

__global__ void my_stencil_kernel(double *field_a, double *field_b) {

 unsigned int pidx = blockIdx.x * blockDim.x + threadIdx.x;

 unsigned int kidx = blockIdx.y * blockDim.y + threadIdx.y;

 field_b[kidx * NumEdges + pidx] = field_a[kidx * NumEdges + pidx];

}

void run(double *field_a, double *field_b) {

 ...

 dim3 dB(BLOCK_SIZE, BLOCK_SIZE, 1);

 dim3 dG(K_SIZE / BLOCK_SIZE, NUM_EDGES / BLOCK_SIZE, 1);

 my_stencil_kernel<<<dG, dB>>>(field_a_gpu, field_b_gpu);

}

39

Pack fields which are always accessed together (because they are vectors in the
mathematical sense) using float2, float3, double2, double3, … types provided by
CUDA.
Gain from larger memory access with same load instruction. Op. intensity unchanged.

Optimization: vector packing

__global__ void my_stencil_kernel(double2 *field_uv,

 double *field_res) {

 ...

 double2 local_field_uv = field_uv[k * NumEdges + pidx];

 field_res[k * NumEdges + pidx] =

 (pow(local_field_uv.u, 2) +

 pow(local_field_uv.v, 2));

 ...

}

@stencil

def my_stencil(

 field_u: Field[Edge, K],

 field_v: Field[Edge, K],

 field_res: Field[Edge, K]

) -> None:

 with levels_upward:

 field_res = field_u ** 2 +

 field_v ** 2

40

Questions so far?

Q&A

41

30 minutes

Coffee break

42

Order of elements of the dense dimension impacts performance when accessing
neighbors. It has implications on locality (thus cache efficiency) and the overall number of
memory transactions.

Optimization: indexing patterns

Row Major Structured Numbering

Space Filling Curve

43

Optimization: indexing patterns

Structured numbering. Always coalesced accesses, worst locality.

Cell > Edge > Cell

24 25 26 27 28 29
30 31 32 33 34 35

44

Optimization: indexing patterns

Structured numbering. Always coalesced accesses, worst locality.

Cell > Edge > Cell

24 25 26 27 28 29
30 31 32 33 34 35

45

Optimization: indexing patterns

Structured numbering. Always coalesced accesses, worst locality.

Cell > Edge > Cell

24 25 26 27 28 29
30 31 32 33 34 35

46

Optimization: indexing patterns

Structured numbering. Always coalesced accesses, worst locality.

Cell > Edge > Cell

24 25 26 27 28 29
30 31 32 33 34 35

47

Optimization: indexing patterns

Row Major numbering. Compromise between access coalescing and locality.

Cell > Edge > Cell

48

Optimization: indexing patterns

Row Major numbering. Compromise between access coalescing and locality.

Cell > Edge > Cell

49

Optimization: indexing patterns

Row Major numbering. Compromise between access coalescing and locality.

Cell > Edge > Cell

50

Optimization: indexing patterns

Row Major numbering. Compromise between access coalescing and locality.

Cell > Edge > Cell

51

0 1 2 3 4 5

19 20 21 22 23 24
6 7 8 9 10 1113 14 15 16 17 18 12

38 39 40 41 42 43
25 26 27 28 29 3032 33 34 35 36 37 31

Optimization: indexing patterns

Structured numbering. Always coalesced accesses, worst locality.

52

0 1 2 3 4 5

19 20 21 22 23 24
6 7 8 9 10 1113 14 15 16 17 18 12

38 39 40 41 42 43
25 26 27 28 29 3032 33 34 35 36 37 31

Edge > Cell

Optimization: indexing patterns

Structured numbering. Always coalesced accesses, worst locality.

53

Edge > Cell

Optimization: indexing patterns

Structured numbering. Always coalesced accesses, worst locality.

54

Edge > Cell

Optimization: indexing patterns

Structured numbering. Always coalesced accesses, worst locality.

55

Optimization: indexing patterns

Row Major numbering. Compromise between access coalescing and locality.

2 5 8 11

16 19 22 25 28
0 3 6 9 121 4 7 10 13

32 35 38 41 44 47
14 17 20 23 26 2915 18 21 24 27 30

56

Optimization: indexing patterns

Row Major numbering. Compromise between access coalescing and locality.

2 5 8 11

16 19 22 25 28
0 3 6 9 121 4 7 10 13

32 35 38 41 44 47
14 17 20 23 26 2915 18 21 24 27 30

Edge > Cell

57

Optimization: indexing patterns

Row Major numbering. Compromise between access coalescing and locality.

Edge > Cell

58

Optimization: indexing patterns

Row Major numbering. Compromise between access coalescing and locality.

Edge > Cell

59

A space filling curve provides the maximum data locality, to the benefit of cache
efficiency. However access coalescing is almost absent.

Optimization: indexing patterns

60

• Code extracted from ICON’s dycore computing a Laplacian and a
Smagorinsky coefficient.

• Only one local neighborhood is used: Edge > Cell > Vertex (graphically
looks like a diamond).

• Taking timings with a 340x340x80 grid, i.e. ~174k edges and 80 k-levels
• 1 NVIDIA V100, compiling with CUDA Toolkit release 10.1
• Baseline of 13 CUDA kernels
• Manually applying optimizations one at a time
• Keep in mind that it’s a single, limited example. Other stencils might not give

the same results.

Case Study: ICON’s “diamond” stencil

61

Case Study: ICON’s “diamond” stencil

Std dev of
measurements
around 10-5

Pack vectors

Baseline

Fuse dense loops

Fuse reductions

Fuse reductions
and sparse loop

62

Recurrent stencil inlining of
sparse temporary field.

Computation is a dot product
between 2 vectors and its
result is required by 3 kernels.

Very little improvement, maybe
an unlucky case.

Case Study: ICON’s “diamond” stencil

63

Parallelizing also the k-loop.

Great improvement despite the
fact that number of edges (and
thus of threads before the opt.)
is very big.

Improvement due to a better
warp scheduling.
Avg inst/cycle almost doubled.

Case Study: ICON’s “diamond” stencil

Reference

64

Trying different indexing
patterns.

Space filling curve pattern is
ICON’s one. Performing slightly
worse than the others.

Overall, differences not very
noticeable.

Case Study: ICON’s “diamond” stencil

(row major) (space filling)

65

P100, ~28k edges, 64 k-levels

All optimizations combined
(packing + fusing + parallelize
k-loop + row-major indexing) vs
ICON OpenACC original stencil
performance.

Case Study: ICON’s “diamond” stencil

66

Currently supports:
• Fusing dense “loops”
• Parallelizing k-loops

To be added:
• Fusing reductions and sparse loops
• One-time stencil inlining
• Recurrent stencil inlining
• Vector packing

Indexing patterns are implicit in the fields’ storages, which are provided externally
(transparent to Dawn).

State of Dawn’s optimizer

67

• Results got so far are promising
• There’s still a lot to experiment: trying other stencils, testing all the

optimizations devised and coming up with others
• Dawn’s optimizer is still work in progress, e.g. need appropriate data

structures to represent fusion of reductions/sparse loops
• Still need to consider splitting the compute domain to run on several

GPUs/nodes, halo exchanges and so on...

Outlook

68

Questions?

Q&A

69

MeteoSvizzera
Via ai Monti 146
CH-6605 Locarno-Monti
T +41 58 460 92 22
www.meteosvizzera.ch

MétéoSuisse
7bis, av. de la Paix
CH-1211 Genève 2
T +41 58 460 98 88
www.meteosuisse.ch

MétéoSuisse
Chemin de l‘Aérologie
CH-1530 Payerne
T +41 58 460 94 44
www.meteosuisse.ch

MeteoSwiss
Operation Center 1
CH-8058 Zurich-Airport
T +41 58 460 91 11
www.meteoswiss.ch

Federal Department of Home Affairs FDHA
Federal Office of Meteorology and Climatology MeteoSwiss

