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© Performance

Overview:
« Some background on GPUs
« Baseline

* Possible optimizations
» Case study: ICON’s “diamond” stencil
« State of performance optimization in Dawn

MeteoSwiss



0 GPUs

NWP codes are strongly data-level parallel. We therefore see GPUs as the
hardware that fits best our needs, as they are throughput-oriented.

* We entirely focus our optimization efforts on producing performant CUDA
code.

« Dawn I|IR’s structure reflects specific needs of the general principles of a
vector processor.

» Follows a short (and extremely simplified!) refresher of GPU architectures
(using NVIDIA terminology) and some GPU optimization hints.

MeteoSwiss



© GPUs simplified

In few words:

« SIMT: Spawn a lot of threads executing concurrently a block of code =
kernel

« But also SIMD: same instruction on several data at once

*  Warp = granularity of SIMD: vector of 32 threads, which execute the same
instruction in lock-step

« Synchronization (between all the threads) at the end of the kernel

MeteoSwiss



© GPUs: parallelizing a loop

__global  void copy kernel (double *a, double *b) {
int pidx = ...
if (pidx < MAX)

for (int i=0; 1 < MAX; ++1) { a [pidx] = b[pidx];
ali] = b[il; » ) '

void run ()| {

Kernel

copy_klrne <<<1 + MAX / BLOCK SIZE, BLOCK SIZE>>>
(a_|gpp, b_gpu);

CPU code

Threads are uniquely indexed, use that index to map memory.

MeteoSwiss



© GPUs: warp execution

Warp 0

Warp 1

Warp 2

Warp 3

Threads: 31

32 33 63

64 65 95

.

96 97 127

I8

MeteoSwiss

a + 5 D
b = a

Data
dependency

Showing a very simplified example of
warp scheduling.

Threads within each warp must execute
the same instruction simultaneously.

A Warp Scheduler selects which warp
goes into execution from a pool of
ready-to-go warps: those for which the
next instructions have the operands
available (data dependencies resolved).

(Divergence due to conditionals is not
considered in this presentation)



© GPUs: warp execution

128 threads (4 warps)

a=a + 5 Data
b= a dependency

MeteoSwiss

STALL due to latency

Warp0 a = a éWarpObza
Warp1 a = Warp1 b = a
Warp 2 a Warp2 b = a
Warp 3 Warp3 b = a




© GPUs: latency hiding (more threads)

256 threads (8 warps)

a=a + 5 Data
b= a dependency

MeteoSwiss

STALL due to latency

— >
Warp0 a = a + 5 Warp0 b = a
Warp1 a = a + 5 Warp1 b = a
Warp2 a = a + 5 Warp2 b = a
Warp3 a = a + 5 Warp3 b = a
Warp4 a = a + 5 Warp4 b = a
Warpb a = a + 5 Warp5 b =

-5 Warp 6 b

Warp 7




@ GPUs: latency hiding (ILP)

STALL due to latency

>

128 threads (4 warps)

Code:
a =a + b

_ Data
c=c+ 2 dependency
b= a

MeteoSwiss

Warp0 a = a + 5 Warp0 b = a
Warp1 a = a + 5 Warp1 b =
Warp2 a = a + 5 Warp 2 b
Warp3 a < a + Warp 3
Warp0 ¢ = ¢
Warp1 ¢ = 2
Warp 2 ¢ + 2
Warp-3 ¢ +02




© GPUs: memory

» Per-thread registers: fast but limited
* Main memory (and caches): slow
* ... (not relevant for our analysis)

Accessing (load/store) main memory efficiently requires some
considerations, e.g. minimizing the number of memory transactions...

MeteoSwiss
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@ GPUs: access coalescing

GPU tries to coalesce loads/stores of a warp (32 threads) into as few as possible transactions...
but transactions span consecutive segments of memory.

V Sequential access pattern: sequential \ { { } } \ \ \

threads in a warp access memory that
is sequential.

MeteoSwiss 17



© GPUs: memory hierarchy

store

Registers

A

Caches

Lowest latency
Highest bandwidth
Extremely limited capacity

Middle ground... but closer to registers.

Working principle: temporarily holds data that are likely
to be reused.

Main memory (RAM)

e Highest latency
e Lowest bandwidth
e Enormous capacity

MeteoSwiss

12



© GPUs: locality

Efficiency of caches (how likely a datum is going to be found already in cache),
depends on the validity of (at least) one of the following statistical assumptions

l time 0

Temporal locality: recently accessed memory locations are
likely to be accessed again in the near future

A

 time 1, 2,
Spatial locality (also data locality): memory locations with l time 0
addresses close to those of recently accessed ones are likely
to be accessed in the near future.
Works because data is transferred between main memory f e fne
and caches in contiguous blocks. x P2

MeteoSwiss



© Contract with the user (parallel model)

@stencil

def my stencil (

)

field a: Field[Edge, K],
field c: Field[Edge, K]

—-> None:
field b: Field[Edge, K]
with levels upward:

field b = field a
field ¢ = field b

MeteoSwiss

We guarantee to the user who wrote this Dusk stencil

that the resulting generated code will be the
equivalent (in terms of effects on output fields) of:

While iterating sequentially through the k-levels
from bottom to top,

— Copying field a over the whole horizontal
domain into field b, then

Copying field b over the whole horizontal
domain into field c.

T4
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__global  wvoid
for (unsigned k
unsigned idx
field b[idx]
}
}
~_global wvoid
for (unsigned k
unsigned idx
field c[idx]
}
}

void run (double

Baseline: 1 CUDA kernel per statement

stmt_1 kernel (double *field a, double *field b) ({
= 0; k < K SIZE; ++k) {

= k * NUM _EDGES + pidx;

= field alidx];

stmt_2_kernel(double *field b, double *field c) {
= 0; k < K _SIZE; ++k) {

= k * NUM EDGES + pidx;

= field b[idx];

*field a, double *field b, double *field c) {

stmt_1_kernel<<<l + NUM EDGES / BLOCK_ SIZE, BLOCK_ SIZE>>>

(field a

gpu, field b gpu);

stmt_2_kernel<<<l + NUM EDGES / BLOCK SIZE, BLOCK SIZE>>>

(field b

gpu, field c gpu);

MeteoSwiss

Assumption: there are no vertical data
dependencies between statements.
We choose our baseline to be very
close to the parallel model. That is:
producing one CUDA kernel per
statement of the original Dusk code
and repeating the k-loop inside each
kernel.

1 CUDA thread will perform the
computation for one location (in this
case one edge) of the dense
“iteration” space.

15



Baseline: Memory organization

Fields as multidimensional arrays linearly stored in row-major order.

* Dense fields: dense[k idx] [dense idx]
* Sparse fields: sparse[k idx] [sparse idx] [dense idx]

Since we parallelize over the dense iteration space, to always obtain coalesced
accesses we must have the dense (edge/vertex/cell) dimension as last.

MeteoSwiss 16



© Baseline: Sparse iterations

Spare iterations (reductions or sparse loop
statements) are translated into for loops.

At each iteration we need to query a neighbor
table which, given the current dense index
and neighbor number, gives the index of the
current neighbor in the mesh.

A neighbor table is organized in memory as
table[dense idx] [nelghbor iter]

MeteoSwiss

Example on Cell > Edge iteration space:

__global void sparse stmt kernel(...) {

for(unsigned k = 0; k < K _SIZE; ++k) {

for (int nbhIter = 0; nbhIter < C E SIZE; ++nbhlIter)

{
int nbhIdx = ceTable[pidx * C_E SIZE + nbhlIter];

o

) ' Index of current

edge neighbor Index of current Neighbor number

cell (0, 1 or2)

17



© Overview on the Roofline model

Performance [GFLOPS/s] Stencil-like computations are (sometimes

heavily) memory bound.

Some of the optimizations we devised aim at
mitigating the limits imposed by memory
bandwidth by increasing the operational
intensity (reducing overall memory traffic).

Peak 1 .~ Compute bound
performance

Another very good way to gain performance is
to hide latency. In this case, memory traffic
remains the same.

>

Operational intensity [FLOPS/byte]

MeteoSwiss 18



o Q&A

Questions so far?

MeteoSwiss
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© Small break

10 minutes

MeteoSwiss
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© Optimization: fusing dense “loops”

, global void fused kernel double *field a, double *field Db,
@stencil — — — — —
* 1 * 1
def my stencil( double *field c, double *field d) {
field a: Field[Edge, K], for(unsigned k = 0; k < K SIZE; ++k) {
unsigned idx = k * NUM _EDGES + pidx;

=~ =

~

[
field b: Field[Edge,
field c: Field[Edge, field b[idx] field afidx]+ 1.0;
field d: Field[Edge, » field d[idx] = field clidx]+ 2.0;

) —-> None: )
}

. s s
with levels upward: void run(double *field a, double *field b,

field b = field a+ 1.0 double *field ¢, double *field d) {

=

field d = field c+ 2.0

fused kernel<<<NUM EDGES*K SIZE/BLOCK SIZE, BLOCK SIZE>>>

(field a gpu, field b gpu, field c gpu, field d gpu);
}

Most simple case: same iteration space (edges) and no data dependencies.

Major benefit: hiding latency. Also gain from avoiding kernel-level synchronization and
from sharing loop over k-levels. Op. intensity unchanged.

MeteoSwiss 21



© Optimization: fusing dense “loops”

@stencil
def my stencil(
field a: Field[Edge, K],
field b: Field[Edge, K],
field c: Field[Vertex, K],
field d: Field[Edge, K]

) —> None:

with levels upward:

field b = field a+ 1.0

field d = sum over (Edge > Vertex,

field c)

=)

__global  wvoid fused kernel(...) {
// e.g. loop over k
field b[k * NumEdges + pidx] =

field a[k * NumEdges + pidx]+ 1.0;

double sum = 0.0;

for (int nbhIter = 0; nbhlIter < E V SIZE; nbhlIter++)
int nbhIdx = evTable[pidx * E V SIZE + nbhIter];
sum += field cl[k * NumVertices + nbhIdx];

}

field d[k * NumEdges + pidx] = sum;

{

Same case as before, just changed the second assignment into a reduction.

MeteoSwiss
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© Optimization: fusing dense “loops”

@stencil
def my stencil(
field a: Field[Edge, K],

) ) global void fused kernel (double *field a, double *field c) {
field c: Field[Edge, K] - - - - -
- ... // e.g. loop over k
) —> None:
double local field b = field alk * NumEdges + pidx];

) ) field c[k * NumEdges + pidx] = local field b;
field b: Field[Edge, K] = = =

. }
with levels upward:

field b = field a

field ¢ = field b

Case: same iteration space (edges) and non-offset data dependency.

On top of benefits of previous case, here we also spare the memory accesses to
field b(temporary). Op. intensity increased.

MeteoSwiss 23



© Optimization: fusing dense “loops”

@stencil

def my stencil(

field a: Field[Vertex, K]
field c: Field[Edge, K]

) —-> None:

=)

field b = sum over (Edge > Cell > Vertex,
field a)
field ¢ = field b +1.0

field b: Field[Edge, K]

with levels upward:

// e.g. loop over k

__global  void fused kernel (double *field a, double *field c) {

double sum = 0.0;

for (int nbhIter = 0; nbhIter < E C V SIZE; nbhlIter++)
int nbhIdx = ecvTable[pidx * E C V SIZE + nbhlter];
sum += field alk * NumVertices + nbhIdx];

}

double local field b = sum;

{

field c[k * NumEdges + pidx] = local field b +1.0;

Same case as before, just changed the first assignment into a reduction.

MeteoSwiss
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© Optimization: fusing dense “loops”

@stencil
def my stencil( __global void fused kernel(...) {

field a: Field[Edge, K], ... // e.g. loop over k

field _c: Field[Cell, KIJ, double local field b = field alk * NumEdges + pidx] +1.0;
field d: Field[Edge, K] double sum = 0.0;

) —> None: » for (int nbhIter = 0; nbhIter < E C SIZE; nbhlter++) {

int nbhIdx = ecTable[pidx * E C SIZE + nbhIter];

sum += local field b * field c[k * NumCells + nbhIdx];
}
with levels upward: field d[k * NumEdges + pidx] = sum;

field b: Field[Edge, K]

field b = field a +1.0

field d = sum over (Edge > Cell, }
field b * field c)

Same case as before, now second assignment is a reduction instead.

Notice that field bis still accessed non-offset from within the reduction, because it's on
edges.

MeteoSwiss 25



©  Optimization: one-time stencil inlining

@stencil

def my stencil(

field a: Field[Vertex, K],
field c: Field[Edge, K]

) —-> None:

field b: Field[Vertex, K]

with levels upward:

field b = field a + 1.0

field ¢ = sum over (Edge > Vertex,

field b)

=)

__global wvoid fused kernel (double *field a, double *field c) {
. // e.g. loop over k

double sum = 0.0;

for (int nbhIter = 0; nbhIter < E V SIZE; nbhlIter++) {
int nbhIdx = evTable[pidx * E V SIZE + nbhIter];

|double local field b = field al[k * NumVertices + nbhIdx] +1.0;

sum += local field b;
}

field c[k * NumEdges + pidx] = sum;

Also when there’s an offset data dependency we can get rid of accesses to temporary
field band remove its pre-computation.

Similar benefits of fusing dense loops with non-offset data dependencies.

Op. intensity increased.

MeteoSwiss
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©  Optimization: one-time stencil inlining

global void fused kernel (double *field a, double *field c) {
@stencil — — — _ _

// e.g. loop over k
def my stencil(

double sum 0 = 0.0;
field a: Field[Vertex, K], B

for (int nbhIter 0 = 0; nbhIter 0 < E C SIZE; nbhIter O0++) {
field c: Field[Edge, K]

int nbhIdx 0 = ecTable[pidx * E C SIZE +nbhIter 0];
) -=> None: — — —

double sum 1 = 0.0;
for (int nbhIter 1 = 0; nbhIter 1 < C V SIZE; nbhIter 1++) {
field b: Field[Cell, K - - o -
- [ » K int nbhIdx 1 = cvTable[nbhIdx 0 * C V SIZE + nbhIter 1];

sum 1 += field alk * NumVertices +nbhIdx 1];
}
double local_field b = sum 1;

with levels upward:

field b = sum over (Cell > Vertex,

field a)

sum 0 += local field b;
field ¢ = sum over (Edge > Cell,

}
field b)

field c[k * NumEdges + pidx] =sum O0;

}

Same optimization. Now first statement is a reduction.

Need to nest reduction loops in the generated code.
MeteoSwiss 27



© Optimization: fusing reductions

@stencil

def my stencil(

)

field a: Field[Edge, K],
field b: Field[Edge, K],
field c: Field[Edge, K],
field d: Field[Vertex, K],
field e: Field[Vertex, K]
-> None:

with levels upward:

field d = sum over (Vertex > Edge,
field a * field b)

field e = sum over (Vertex > Edge,
field a * field c)

=)

__global void fused kernel(...) {

. // e.qg.

loop over k

double sum d = 0.0;

double sum e = 0.0;

for (int nbhIter = 0; nbhIter < V_E SIZE; nbhIter++) {

int nbhIdx = veTable[pidx * V_E SIZE + nbhIter];

double local field a = field alk * NumEdges + nbhIdx];
(local field a * field b[k * NumEdges + nbhIdx]);

(local field a * field c[k * NumEdges + nbhIdx]);

sum_d +=
sum e +=
}
field d[k * NumVertices + pidx] = sum d;

field e[k * NumVertices + pidx] = sum e;

Can fuse reductions on same iteration space (here Vertex > Edge).
Multiple benefits, sharing: accesses to input fields in common, accesses to the
neighbor table and the loop over neighbors. Op. intensity increased.

MeteoSwiss
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©  Optimization: fusing also sparse loops

@stencil
__global wvoid fused kernel(...)

def my stencil (
. {

field a: Field[Edge, K],

// e.g. loop over k
field b: Field[Vertex, K], El P

[
[
) ) double sum = 0.0;
field c: Field[Edge, K],
[ double local field b = field b[k * NumVertices + pidx];

field d: Field[Vertex, K],
B for (int nbhIter = 0; nbhIter < V_E SIZE; nbhIter++) {

field sparse: Field[Vertex > Edge, K]
) —> N_ » int nbhIdx = veTable[pidx * V E SIZE + nbhIter];
- one: b

field sparse[k*V E SIZE*NumVertices + nbhIter*NumVertices + pidx] =
field al[k * NumEdges + nbhIdx] *

with levels upward:
— local field b;

with sparse[Vertex > Edge]:

sum += (local field b * field cl[k * NumEdges + nbhIdx]);
}

field d[k * NumVertices + pidx] = sum;

field sparse = field a * field b

field d = sum over (Vertex > Edge,
field b * field c)

}
Can fuse 2 sparse loops or a sparse loop with a reduction.
Same benefits as previous optimization.

MeteoSwiss 29



©  Optimization: fusing also sparse loops

@stencil
def my stencil(
field a: Field[Edge, K],

[
field b: Field[Vertex, K],
field c: Field[Edge, K],

[

field d: Field[Vertex, K]

) —-> None:

field sparse: Field[Vertex > Edge, K]

with levels upward:

with sparse[Vertex > Edge]:

field sparse = field a * field b

__global wvoid fused kernel (double *field a, double *field b,

=)

field d = sum over (Vertex > Edge,

field sparse * field c)

double *field c, double *field d)

// e.g. loop over k

double sum = 0.0;

for (int nbhIter = 0; nbhIter < V_E SIZE; nbhlIter++) {

int nbhIdx = veTable[pidx * V_E SIZE + nbhIter];

double local field sparse = field a[k * NumEdges + nbhIdx] *

field b[k * NumVertices + pidx];

sum += (local field sparse * field c[k * NumEdges + nbhIdx]);
}

field d[k * NumVertices + pidx] = sum;

Data dependency between loops being fused. Saving also accesses to
field sparse. This corresponds to inlining the computation of field sparse.

MeteoSwiss
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© Optimization: recurrent stencil inlining

__global wvoid fused kernel 1(double *field a, double *field c) {

field b: Field[Vertex, K] // e.g. loop over k

double sum = 0.0;

with levels upward: for (int nbhIter = 0; nbhIter < E V SIZE; nbhlIter++) {

field b = field a +1.0 int nbhIdx = evTable[pidx * E V SIZE + nbhIter];

field ¢ = sum over (Edge > Vertex, |double local field b = field alk * NumVertices + nbhIdx] +1.0;
field b) » sum += local field b;

field d = sum over (Cell > Vertex, }
field b) field c[k * NumEdges + pidx] = sum;

__global  void fused kernel 2 double *field a, double *field d) {
PR . . ... // e.g. 1 v k
Temporary is inlined multiple times. e

. . double sum = 0.0;
Under some circumstances, it can for (int nbhlter = 0; nbhIter < C_V SIZE; nbhItert+)
improve performance int nbhIdx = cvTable[pidx * C_V_SIZE + nbhlIter];
Benefits of this transformation are double local field b = field alk * NumVertices + nbhIdx] +1.0;
. =1 1 field b;
not captured by the Roofline model. } sum T toeat tiend
field d[k * NumCells + pidx] = sum;
MeteoSwiss )
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© Optimization: recurrent stencil inlining

field b: Field[Vertex, K]

with levels upward: with levels upward:
field b = field a + 1.0 field ¢ = sum over (Edge > Vertex,
field ¢ = sum over (Edge > Vertex, VS.

fieldb)

field d = sum over (Cell > Vertex,

field a +1.0)
field d = sum over (Cell > Vertex,

field a +1.0)
fieldb)

2 memory accesses per vertex +
3 memory accesses per edge +
7 memory accesses per cell

0 memory accesses per vertex +
3 memory accesses per edge +
7 memory accesses per cell

v

Ignoring effects of cache and of indexing pattern (explained later on).

MeteoSwiss
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© Optimization: recurrent stencil inlining

field tmp: Field[Vertex, K]

with levels upward: with levels upward:

field tmp = (field a + field b + field c)*% field d = sqrt((field a + field b + field c)** + 5.0)
field d = sqgrt (field tmp + 5.0) VS. field e = sum over (Edge > Vertex,
field e = sum over (Edge > Vertex,

(field a + field b + field c)** + 5.0)

field_tmp * 4.0) field f = (field a + field b + field c)** / 2.0

field f = field_tmp / 2.0

8 memory accesses per vertex +
3 memory accesses per edge

v

Ignoring effects of cache and of indexing pattern (explained later on).

8 memory accesses per vertex +
7 memory accesses per edge
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© Optimization: recurrent stencil inlining

field tmp: Field[Edge > Vertex, K]

with levels upward: with levels upward:

with sparse[Edge > Vertex]:
field tmp = (field edge * field vertl)*%® VS.

field x = sum over (Edge > Vertex,

field x = sum _over (Edge > Vertex,

field vert2 + (field edge * field vertl) *¥)

field y = sum over (Edge > Vertex,
field vert2 +field tmp)

field x * (field edge * field vertl) *%¥)
field y = sum over (Edge > Vertex,

field x *field tmp)

14 memory accesses per edge 11 memory accesses per edge

v

In this case the temporary is a sparse field.
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Limitations: register pressure

Short digression:

The optimizations presented so far tend to increase the number of necessary
hardware registers per thread, as a natural consequence of keeping memory
transactions to the minimum.

At some point registers will be spilled into main memory!

How much can we fuse kernels together until it's not convenient anymore?
Clearly we need to keep an eye on register pressure.
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O

Limitations: data dependencies

@stencil

def my stencil(

)

field a: Field[Vertex, K],

field c: Field[Vertex, K],

[

field b: Field[Cell, K],
[
[

field d: Field[Cell, K]

-> None:

with levels

upward:

field b =

sum_over (Cell > Vertex,

field c)

field c =

field a +1.0

field d

sum_over (Cell > Vertex,

field a * field c)

MeteoSwiss

Would like to fuse these 2 statements
together in the same kernel, because

they are both on cells.
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© Limitations: data dependencies

@stencil

def my stencil(

field a: Field[Vertex, K],
field b: Field[Cell, K],
field c: Field[Vertex, K],
field d: Field[Cell, K]

) —> None:

with levels upward:

field b = sum over (Cell > Vertex,

field c)

field ¢ = field a + 1.0

field d = sum over (Cell > Vertex,

field a *field c)

MeteoSwiss

> WAR
> RAW

Can’t. There is a write-after-read
dependency between first and second
statements and a read-after-write
dependency between second and
third.
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©  Optimization: parallelize k-loop

__global void my stencil kernel double *field a, double *field b) {

@stencil unsigned int pidx = blockIdx.x * blockDim.x + threadIdx.x;

def my_stencil ( unsigned int kidx = blockIdx.y * blockDim.y + threadIdx.y;
field a: Field[Edge, K],

field b: Field[Edge, K] field b[kidx * NumEdges + pidx] = field akidx * NumEdges + pidx];

) -=> None: » }
void run(double *field a, double *field b) {

with levels upward:

field b = field a dim3 dB(BLOCK SIZE, BLOCK SIZE, 1);
dim3 dG(K_SIZE / BLOCK SIZE, NUM EDGES / BLOCK SIZE,l);
my stencil kernel<<<dG, dB>>>(field a gpu, field b gpu);
}

Assumption: order of iteration over k-levels doesn’t matter.
1 CUDA thread will perform the computation for one location (here edge) and for one k level.
More threads: helps in hiding latency. Op. intensity unchanged.
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©  Optimization: vector packing

@stencil ~_global void my stencil kernel double2 *field uv,

def my stencil( double *field res) {
field u: Field[Edge, K], ..

field v: Field[Edge, K], double? local field uv = field uv[k * NumEdges + pidx];
field res: Field[Edge, K] » field res[k * NumEdges + pidx] =

) —> None: (pow (local field uv.u, 2) +

pow local_ field uv.v, 2));
with levels upward:
field res = field u **2 + }
field v **2

Pack fields which are always accessed together (because they are vectors in the
mathematical sense) using float2, float3, double2, double3, ...types provided by
CUDA.

Gain from larger memory access with same load instruction. Op. intensity unchanged.
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o Q&A

Questions so far?

MeteoSwiss
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©  Coffee break

30 minutes

MeteoSwiss
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©  Optimization: indexing patterns

NN N e,
W Avmgm%vmm%y

Vi i iy

Row Major

Structured Numbering

Space Filling Curve £

Order of elements of the dense dimension impacts performance when accessing
neighbors. It-has implications on locality (thus cache efficiency) and the overall number of

memory transactions.
MeteoSwiss )



©  Optimization: indexing patterns

Cell > Edge > Cell

Structured numbering. Always coalesced accesses, worst locality.

MeteoSwiss
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©  Optimization: indexing patterns

Cell > Edge > Cell

Structured numbering. Always coalesced accesses, worst locality.
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©  Optimization: indexing patterns

Cell > Edge > Cell

Structured numbering. Always coalesced accesses, worst locality.
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©  Optimization: indexing patterns

Cell > Edge > Cell

Structured numbering. Always coalesced accesses, worst locality.

MeteoSwiss
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©  Optimization: indexing patterns

Cell > Edge > Cell

Row Major numbering. Compromise between access coalescing and locality.
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©  Optimization: indexing patterns

Cell > Edge > Cell

Row Major numbering. Compromise between access coalescing and locality.
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©  Optimization: indexing patterns

Cell > Edge > Cell

Row Major numbering. Compromise between access coalescing and locality.
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©  Optimization: indexing patterns

Cell > Edge > Cell

Row Major numbering. Compromise between access coalescing and locality.
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@ Optimization: indexing patterns

““
X
e

AT

Structured numbering. Always coalesced accesses, worst locality.
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@ Optimization: indexing patterns

W Edge > Cell

VAVAVAVAVAVA
VAVAVAVAVAY

Structured numbering. Always coalesced accesses, worst locality.
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©  Optimization: indexing patterns

%
b AAA N
NVAVAVAVAVAVA

Structured numbering. Always coalesced accesses, worst locality.
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©  Optimization: indexing patterns

NAAAAY
N\ s

1 2 3

Structured numbering. Always coalesced accesses, worst locality.
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@ Optimization: indexing patterns

AVATATA AN
S NERERERT R

Row Major numbering. Compromise between access coalescing and locality.
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@ Optimization: indexing patterns

QQAAA

VAT LY LY
LVAVAVAVAY:

Row Major numbering. Compromise between access coalescing and locality.
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©  Optimization: indexing patterns

A A

Row Major numbering. Compromise between access coalescing and locality.
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©  Optimization: indexing patterns

W L

Row Major numbering. Compromise between access coalescing and locality.
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Optimization: indexing patterns

o x
A space filling curve provides the maximum data locality, to the benefit of cache
efficiency. However access coalescing is almost absent.
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© Case Study: ICON'’s “diamond” stencil

» Code extracted from ICON'’s dycore computing a Laplacian and a
Smagorinsky coefficient.

* Only one local neighborhood is used: Edge > Cell > Vertex (graphically
looks like a diamond).

« Taking timings with a 340x340x80 grid, i.e. ~174k edges and 80 k-levels

* 1 NVIDIA V100, compiling with CUDA Toolkit release 10.1

« Baseline of 13 CUDA kernels

« Manually applying optimizations one at a time

« Keep in mind that it's a single, limited example. Other stencils might not give
the same results.
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© Case Study: ICON'’s “diamond” stencil

Baseline

Pack vectors
Fuse dense loops
Fuse reductions

Fuse reductions
and sparse loop
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© Case Study: ICON'’s “diamond” stencil

Recurrent stencil inlining of 00100
sparse temporary field.

0.0075

Computation is a dot product
between 2 vectors and its
result is required by 3 kernels.

0.0050

0.0025

Runtime [s]

0.0000

Very little improvement, maybe
an unlucky case.
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© Case Study: ICON'’s “diamond” stencil

Parallelizing also the k-loop.

Great improvement despite the
fact that number of edges (and
thus of threads before the opt.)
is very big.

Improvement due to a better
warp scheduling.

Avg inst/cycle almost doubled.

MeteoSwiss

Runtime [s]

0.0100
Reference
0.0075

0.0050

0.0025

0.0000
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© Case Study: ICON'’s “diamond” stencil

Trying different indexing
patterns.

Space filling curve pattern is
ICON'’s one. Performing slightly
worse than the others.

Overall, differences not very
noticeable.

MeteoSwiss

Runtime [s]

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

default strided icon mesh

(row maijor) (space filling)
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© Case Study: ICON'’s “diamond” stencil

P100, ~28k edges, 64 k-levels

All optimizations combined
(packing + fusing + parallelize
k-loop + row-major indexing) vs
ICON OpenACC original stencil
performance.

MeteoSwiss

Runtime [s]

0.00100

0.00075

0.00050

0.00025

0.00000
ICON CUDA manually optimized
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State of Dawn’s optimizer

Currently supports:

* Fusing dense “loops”
« Parallelizing k-loops

To be added:

* Fusing reductions and sparse loops
* One-time stencil inlining

* Recurrent stencil inlining

« Vector packing

Indexing patterns are implicit in the fields’ storages, which are provided externally

(transparent to Dawn).

MeteoSwiss
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©  Outlook

* Results got so far are promising

« There’s still a lot to experiment: trying other stencils, testing all the
optimizations devised and coming up with others

« Dawn’s optimizer is still work in progress, e.g. need appropriate data
structures to represent fusion of reductions/sparse loops

« Still need to consider splitting the compute domain to run on several
GPUs/nodes, halo exchanges and so on...
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o Q&A

Questions?

MeteoSwiss
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