
42

Order of elements of the dense dimension impacts performance when accessing
neighbors. It has implications on locality (thus cache efficiency) and the overall number of
memory transactions.

Optimization: indexing patterns

Row Major Structured Numbering

Space Filling Curve

43

Optimization: indexing patterns

Structured numbering. Always coalesced accesses, worst locality.

Cell > Edge > Cell

24 25 26 27 28 29
30 31 32 33 34 35

44

Optimization: indexing patterns

Structured numbering. Always coalesced accesses, worst locality.

Cell > Edge > Cell

24 25 26 27 28 29
30 31 32 33 34 35

45

Optimization: indexing patterns

Structured numbering. Always coalesced accesses, worst locality.

Cell > Edge > Cell

24 25 26 27 28 29
30 31 32 33 34 35

46

Optimization: indexing patterns

Structured numbering. Always coalesced accesses, worst locality.

Cell > Edge > Cell

24 25 26 27 28 29
30 31 32 33 34 35

47

Optimization: indexing patterns

Row Major numbering. Compromise between access coalescing and locality.

Cell > Edge > Cell

48

Optimization: indexing patterns

Row Major numbering. Compromise between access coalescing and locality.

Cell > Edge > Cell

49

Optimization: indexing patterns

Row Major numbering. Compromise between access coalescing and locality.

Cell > Edge > Cell

50

Optimization: indexing patterns

Row Major numbering. Compromise between access coalescing and locality.

Cell > Edge > Cell

51

0 1 2 3 4 5

19 20 21 22 23 24
6 7 8 9 10 1113 14 15 16 17 18 12

38 39 40 41 42 43
25 26 27 28 29 3032 33 34 35 36 37 31

Optimization: indexing patterns

Structured numbering. Always coalesced accesses, worst locality.

52

0 1 2 3 4 5

19 20 21 22 23 24
6 7 8 9 10 1113 14 15 16 17 18 12

38 39 40 41 42 43
25 26 27 28 29 3032 33 34 35 36 37 31

Edge > Cell

Optimization: indexing patterns

Structured numbering. Always coalesced accesses, worst locality.

53

Edge > Cell

Optimization: indexing patterns

Structured numbering. Always coalesced accesses, worst locality.

54

Edge > Cell

Optimization: indexing patterns

Structured numbering. Always coalesced accesses, worst locality.

55

Optimization: indexing patterns

Row Major numbering. Compromise between access coalescing and locality.

2 5 8 11

16 19 22 25 28
0 3 6 9 121 4 7 10 13

32 35 38 41 44 47
14 17 20 23 26 2915 18 21 24 27 30

56

Optimization: indexing patterns

Row Major numbering. Compromise between access coalescing and locality.

2 5 8 11

16 19 22 25 28
0 3 6 9 121 4 7 10 13

32 35 38 41 44 47
14 17 20 23 26 2915 18 21 24 27 30

Edge > Cell

57

Optimization: indexing patterns

Row Major numbering. Compromise between access coalescing and locality.

Edge > Cell

58

Optimization: indexing patterns

Row Major numbering. Compromise between access coalescing and locality.

Edge > Cell

59

A space filling curve provides the maximum data locality, to the benefit of cache
efficiency. However access coalescing is almost absent.

Optimization: indexing patterns

60

• Code extracted from ICON’s dycore computing a Laplacian and a
Smagorinsky coefficient.

• Only one local neighborhood is used: Edge > Cell > Vertex (graphically
looks like a diamond).

• Taking timings with a 340x340x80 grid, i.e. ~174k edges and 80 k-levels
• 1 NVIDIA V100, compiling with CUDA Toolkit release 10.1
• Baseline of 13 CUDA kernels
• Manually applying optimizations one at a time
• Keep in mind that it’s a single, limited example. Other stencils might not give

the same results.

Case Study: ICON’s “diamond” stencil

61

Case Study: ICON’s “diamond” stencil

Std dev of
measurements
around 10-5

Pack vectors

Baseline

Fuse dense loops

Fuse reductions

Fuse reductions
and sparse loop

62

Recurrent stencil inlining of
sparse temporary field.

Computation is a dot product
between 2 vectors and its
result is required by 3 kernels.

Very little improvement, maybe
an unlucky case.

Case Study: ICON’s “diamond” stencil

63

Parallelizing also the k-loop.

Great improvement despite the
fact that number of edges (and
thus of threads before the opt.)
is very big.

Improvement due to a better
warp scheduling.
Avg inst/cycle almost doubled.

Case Study: ICON’s “diamond” stencil

Reference

64

Trying different indexing
patterns.

Space filling curve pattern is
ICON’s one. Performing slightly
worse than the others.

Overall, differences not very
noticeable.

Case Study: ICON’s “diamond” stencil

(row major) (space filling)

65

P100, ~28k edges, 64 k-levels

All optimizations combined
(packing + fusing + parallelize
k-loop + row-major indexing) vs
ICON OpenACC original stencil
performance.

Case Study: ICON’s “diamond” stencil

66

Currently supports:
• Fusing dense “loops”
• Parallelizing k-loops

To be added:
• Fusing reductions and sparse loops
• One-time stencil inlining
• Recurrent stencil inlining
• Vector packing

Indexing patterns are implicit in the fields’ storages, which are provided externally
(transparent to Dawn).

State of Dawn’s optimizer

67

• Results got so far are promising
• There’s still a lot to experiment: trying other stencils, testing all the

optimizations devised and coming up with others
• Dawn’s optimizer is still work in progress, e.g. need appropriate data

structures to represent fusion of reductions/sparse loops
• Still need to consider splitting the compute domain to run on several

GPUs/nodes, halo exchanges and so on...

Outlook

68

Questions?

Q&A

69

MeteoSvizzera
Via ai Monti 146
CH-6605 Locarno-Monti
T +41 58 460 92 22
www.meteosvizzera.ch

MétéoSuisse
7bis, av. de la Paix
CH-1211 Genève 2
T +41 58 460 98 88
www.meteosuisse.ch

MétéoSuisse
Chemin de l‘Aérologie
CH-1530 Payerne
T +41 58 460 94 44
www.meteosuisse.ch

MeteoSwiss
Operation Center 1
CH-8058 Zurich-Airport
T +41 58 460 91 11
www.meteoswiss.ch

Federal Department of Home Affairs FDHA
Federal Office of Meteorology and Climatology MeteoSwiss

