Very high resolution modelling with unstructured mesh global ocean model (FESOM2)

Nikolay Koldunov, Sergey Danilov, Dmitry Sein, Dmitry Sidorenko, Patrick Scholz, Qiang Wang, Vadym Aizinger, Natalja Rakowsky, Claudia Wekerle, William Cabos, Thomas Jung

Finite volumE Sea Ice Ocean Model FESOM2

•

•

Refine mesh in chosen regions and/or narrow straits: the same as traditional nesting. Regional ocean modelling in a global framework.

- Vary mesh resolution smoothly in the global ocean according to specified functions (for example, of Rossby radius or eddy variability)
- The combination of the two

Eddy resolving Arctic Ocean (1km) in global model

Eddy resolving Arctic Ocean (1km) in global model

ASSOCIATION

Eddy resolving for the price of eddy permitting

FESOM-HR 10 13 15 20 25 30 40 n km

Refinement according to SSH var. Resolution: 1/4°-1/10° Wet points: 1.3M

Number of points is similar to structured 1/4° resolution grid.

Sein et al., 2017

VIDEO: https://www.youtube.com/watch?v=HINcizEIM4Q

Eddy resolving for the price of eddy permitting

Equivalent of ORCA25 (1/4°) HR mesh (10-60 km)

ROSSBY4.2 mesh

23M points (1/24° equivalent) 80 vertical levels 1.85-25 km resolution

VIDEO: https://www.youtube.com/watch?v=a3XnJ9wG9Zc&t=5s

FESOM FLIMHOLTZ

FESOM2/IFS Numerical weather prediction

Finite volumE Sea ice-Ocean Model **FESIM** Sea ice model

FESOM-C

Coastal model

AWI-ESM FESOM2/REcoM/PISM/ECHAM6/JSBACH/VILMA

FESOM2/ECHAM6

AWI-CM2

FESOM2/OpenIFS

FESOM2 family

Meshes used for scalability study

0.6Mio surface vertices (4.5 km Arctic) scaling

FESOM FEINHOLTZ

5.5Mio surface vertices (1/10°) scaling

Sea ice

Implement modified sea ice dynamics that converges faster (x6).

Planned:

- Couple every other time step
- Run on dedicated CPUs in parallel
- Run on GPUs in parallel.

Sea ice in 1km Arctic Ocean simulations

VIDEO: https://www.youtube.com/watch?v=HKdaheQR9kM

FESOM2 throughput

Simulated year per day (SYPD) = $c_{SYPD} \frac{timer step * Number of cores}{Degrees of freedom}$

Model/mesh	Resolution	Vertices (ocean)	Cores	Time step, s	Levels	SYPD	c _{SYPD} 3-D	$c_{\rm SYPD}$ 2-D	Citation
POP	1/10°	5.8 million	16875	173	60	10.5	1252	20	Huang et al. (2016)
ACCESS-OM2-01	1/10°	5.8 million	6138	450	75	1.2	188	3	Kiss et al. (2019)
FESOM2/STORM	1/10°	5.6 million	13 828	600	47	15.9	505	11	
NEMO/ORCA25	1/4°	0.9 million	2048	3600	75	5-10	92	1	Prims et al. (2018)
MOM5.1/CM2.5	1/4°	0.9 million	960	1800	50	11	286	6	Ward and Zhang (2015)
MOM6	1/4°	0.9 million	1920	1200	75	8.9	260	3	Ward (2016)
ACCESS-OM2-025	1/4°	0.8 million	1816	1800	50	9	110	5	Kiss et al. (2019)
FESOM2/fArc	1/3°	0.6 million	2304	900	47	56.2	764	16	
ACCESS-OM2	1°	0.065 million	240	5400	50	63	158	3	Kiss et al. (2019)
FESOM2/CORE2	1°	0.13 million	288	2700	47	120	921	20	

Koldunov et al., 2019

ΛΛ//

	Points/Rossby radius	High/low	Throughput	Nodes
D3	1-0.5	5-25 km	20 SYPD	3.1M
Next	0.5-0.25	2-25 km	3.5 SYPD	12.9M
ROSSBY4.2	0.25	1.85-25 km	1.5 SYPD	23.2M

100 years of simulations already done

- Data storage
 - Do more inside the model code itself
 - New file formats (e.g. zarr) for faster parallel access
- Post-processing and visualization
 - Only parallel after some number of points is possible.
- Should be interactive (exploratory), otherwise it is hard to do science.

ASSOCIATION

FES

Python saves the day

Interactive data processing on local cluster pre/post processing node (24 cores, 1T of memory)

Take home messages

- Unstructured mesh ocean models allow to put resolution where it is needed this saves computing time.
- For the same number of points Global unstructured mesh models can be as fast as classical regular grid ocean models.
- Main scalability bottle necks are SSH solver and sea ice model, they have to be optimized first.

GMDD paper:

Scalability and some optimization of the Finite-volumE Sea ice-Ocean Model, Version 2.0 (FESOM2)

Nikolay V. Koldunov^{(D1,2}, Vadym Aizinger^{2,3}, Natalja Rakowsky^{(D2}, Patrick Scholz^{(D2}, Dmitry Sidorenko², Sergey Danilov^{2,4}, and Thomas Jung^{(D2})

