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Machine learning applications across the numerical weather prediction 
workflow

Observations Data-assimilation Numerical weather 
forecasts

Post-processing 
and dissemination

Application areas for machine learning are spread over the entire workflow:
weather data monitoring, real-time quality control for observational data, anomaly interpretation, guided quality 
assignment and decision making, data fusion from different sources, correction of observation error, 
learn governing differential equations, non-linear bias correction, bias predictors, learn operational operators, 
define optical properties of hydrometeors and aerosols, emulate conventional tools improve efficiency,
emulate model components, develop improved parametrisation schemes, build better error models, learn the 
underlying equations of motion, generate tangent linear or adjoint code from machine learning emulators, 
real-time adjustments of forecast products, feature detection, uncertainty quantification, error corrections for 
seasonal predictions, development of low-complexity models, bespoke products for business opportunities,
and many more…



State-of-play and outline of the talk

There are many interesting application areas for machine 
learning to improve weather and climate predictions

We are only at the beginning to explore the potential of 
machine learning in the different areas

I will present a couple of example applications of machine 
learning at ECMWF in the following

I will name the main challenges that we are facing when using 
machine learning today



Observations:
Detect the risk for the ignition of wild fires by lightnings

• Observations for 15 variables are used as inputs including 
soil moisture, 2m temperature, soil type, vegetation cover, 
relative humidity, and precipitation

• The rate of radiant heat output from the Global Fire 
Assimilation System (GFAS) was used to generate a 
“truth”

• 12,000 data points were used for training

• Different machine learning tools (decision trees, random 
forest and Ada Boost​) are used to classify the cases into
“ignition” and “no-ignition”

• The best classifier has an accuracy of 77 %

Ruth Coughlan, Francesca Di Giuseppe, Claudia Vitolo and the SMOS-E project



Data assimilation: 
Bias-correct the forecast model in 4DVar data assimilation

• Data-assimilation blends observations 
and the forecast model to generate initial 
conditions for weather predictions

• This requires estimates of errors of 
observations and the forecast model

• The new weak-constraint 4D-Var 
algorithm learns that the model 
consistently underestimates temperature 
between 100hPa and 10hPa

• We learn a forcing to correct for the 
systematic model error

• We still use fairly simple machine learning 
techniques but we have started to 
investigate deep learning approaches 
together with NVIDIA

Mean first-guess departure with respect to GPS-RO temperature retrievals

learning phase of the cold bias adjust subsequent model 
integration (RMSE 
reduced up to 5%)

Patrick Laloyaux and Massimo Bonavita



Numerical weather forecasts: To emulate the radiation scheme
• Store input/output data pairs of the radiation schemes
• Use this data to train a neural network
• Replace the radiation scheme by the neural network within the model

Why would you do this?
Neural networks are likely to be much more efficient and portable to heterogenous hardware

Surface downward solar radiation for the original scheme and the neural network emulator (based on a ResNet).

The approach is working and the neural network is ~10 times faster than the original scheme.
However, model results are still degraded.

Dueben, Hogan, Bauer @ECMWF and Progsch, Angerer @NVIDIA

This is a very active area of research:
Rasp, Pritchard, Gentine PNAS 2018
Brenowitz and Bretherton GRL 2018
…



Numerical weather forecasts: To precondition the linear solver
• Linear solvers are important to build efficient semi-implicit time-stepping schemes for atmosphere and ocean models.
• However, the solvers are expensive.
• The solver efficiency depends critically on the preconditioner that is approximating the inverse of a large matrix. 

Can we use machine learning for preconditioning, predict the inverse of the matrix and reduce the number of 
iterations that are required for the solver?

Testbed: A global shallow water model at 5 degree resolution but with real-world topography. 
Method: Neural networks that are trained from the model state and the tendencies of full timesteps.

Machine learning preconditioner: Implicit Richardson preconditioner:

It turns out that the approach (1) is working and cheap, (2) interpretable and (3) easy to implement 
even if no preconditioner is present. Ackmann, Dueben, Smolarkieicz and Palmer 



Post-processing and dissemination: Improve ensemble predictions

Grönquist, Yao, Ben-Nun, Dryden, Dueben, Lavarini, Li, Hoefler https://arxiv.org/abs/2005.08748

Ensemble predictions are important but expensive.
Can we correct ensemble spread calculated from a small number of ensemble members via deep learning?
• Use fields of five ensemble members as inputs.
• Predict ensemble spread of temperature at 850 hPa and Z500 hPa for a 2-day forecast of a full 10 member 

ensemble forecast.



Post-processing and dissemination: ecPoint to post-process rainfall predictions

Timothy Hewson and Fatima Pillosu

• Use forecast data as inputs
• Train against worldwide rainfall observations
• Improve local rainfall predictions by accounting

for sub-grid variability and weather-dependent biases
• Use decision trees as machine learning tool

Example: Devastating floods in Crete on 25 February 2019

Benefits: Earlier and more consistent signal with higher probabilities
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What is the limit? 
Can we replace the entire forecast system?

We could base the entire model on neural networks and trash the conventional models.?
There are limitations for existing models and ECMWF provides access to 210 petabyte of data

A simple test configuration:
 We retrieve historical data (ERA5) for geopotential at 500 hPa (Z500) for the last decades

(>65,000 global data sets)
 We map the global data to a coarse two-dimensional grid (60x31)
 We learn to predict the update of the field from one hour to the next using deep learning
 Once we have learned the update, we can perform predictions into the future

No physical understanding is required!

Dueben and Bauer GMD 2018 



Dueben and Bauer GMD 2018 

What is the limit? Can we replace the entire forecast system?

Time evolution of Z500 for historic data and a neural network prediction.
Can you tell which one is the neural network?

 The neural network is picking up the dynamics nicely.
 Forecast errors are comparable if we compare like with like.
 Is this the future?

Unlikely… 
The simulations are unstable. 
It is unknown how to increase complexity.
There are only ~40 years of data available.

However, there is a lot of progress at the moment:
Scher and Messori GMD 2019; Weyn, Durran, and Caruana JAMES 2019; …



What is the limit? Can we replace the entire forecast system?
However, machine learning models are very promising for now-casting applications that provide weather 
predictions for a couple of hours lead time.

Here…
…conservation is not important as errors have no time to accumulate.
…interactions between weather phenomena are not important (more advection, less physics).
…only local predictions are required → more independent datasets are available for training.

Example: 1-hour predictions of precipitation by Google:

NOAA forecast:             Ground truth:                            Machine learning solution:

https://ai.googleblog.com/2020/01/using-machine-learning-to-nowcast.html



Why is hard for machine learning tools to compete?

Because our models are astonishing!

Top-of-the-atmosphere cloud brightness temperature [K] for satellite observations and a
simulation of the atmosphere with 1.45 km resolution. 
Dueben, Wedi, Saarinen and Zeman JSMJ 2020

A weather forecast simulation has O(1,000,000,000) degrees-of-freedom.



Scientific challenges for machine learning in numerical weather 
predictions

There is no fundamental reason not to use a black box within weather and climate 
models but there are unanswered questions.

• Can we use our knowledge about the Earth System to improve machine learning tools?
• Can we diagnose physical knowledge from the machine learning tools? 
• Can we remove errors from neural networks and secure conservation laws?
• Can we guarantee reproducibility?
• Can we find the optimal hyper-parameters?
• Can we efficiently scale machine learning tools to high performance computing applications?
• Can we interface machine learning tools with conventional models?
• Can we design good training data (short time steps and high resolution, labelled datasets)?
• Can we explore the full phase space (all weather regimes) during training?

Many scientists are working on these challenges as we speak.



My personal vision of the way forward...

Idealised equations: To study known differential 
equations to learn how to derive blueprints for neural 
network architectures.

Uncertainty quantification: To study the representation of 
variability and the correction of systematic errors for neural 
networks.

Scalable solutions: To learn how to scale neural networks 
to millions of inputs for 3D fields on the sphere.

Benchmark problems: To build benchmark problems 
similar to ImageNet (see WeatherBench in Rasp, Dueben, 
Scher, Weyn, Mouatadid and Thureey 2020)

This will require machine learning solutions that are 
customised to weather and climate models.

We also need to learn how to use ML accelerators for 
conventional models Hatfield, Chantry, Dueben, Palmer 
Best Paper Award PASC2019



ML workshop and seminar series at ECMWF

ECMWF-ESA Workshop on Machine Learning for Earth System Observation and Prediction 
at ECMWF 5-8 October 2020. More information is here.

We have also started a special seminar series on Machine Learning that is broadcasted.

https://www.ecmwf.int/en/learning/workshops/ecmwf-esa-workshop-machine-learning-earth-system-observation-and-prediction
https://www.ecmwf.int/en/learning/workshops/machine-learning-seminar-series


Conclusions

• There are a large number of application areas throughout the prediction workflow in weather and 
climate modelling for which machine learning can really make a difference.

• The weather and climate community is still at the beginning to explore the potential of machine 
learning (and in particular deep learning).

• Machine learning could not only be used to improve models, it could also be used to make them 
more efficient on future supercomputers.

• Machine learning accelerators could be useful to speed-up components of weather and climate 
models.

• However, there are limitations for the application of black-box solutions within weather and 
climate models and challenges that need to be addressed.

Many thanks.
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