

Learning to simulate precipitation with Deep Neural Networks

Carlos Gómez Gonzalez, Markus Donat, Kim Serradell carlos.gomez@bsc.es

6th ENES HPC Workshop 2020

Machine Learning

Dimensionality reduction

Density estimation

Supervised Learning

$$f: \mathcal{X} \to \mathcal{Y}, \quad (x_i, y_i)_{i=1,\dots,n}$$

$$f = \underset{f_{\theta}, \theta \in \Theta}{\operatorname{arg\,min}} \sum_{i=1}^{n} \mathcal{L}(y_i, f_{\theta}(x_i)) + g(\theta)$$

Supervised Learning

$$f: \mathcal{X} \to \mathcal{Y}, \quad (x_i, y_i)_{i=1,\dots,n}$$

$$f = rg \min_{f_{ heta}, heta \in \Theta} \sum_{i=1}^{n} \mathcal{L}(y_i, f_{ heta}(x_i)) + g(heta)$$
Training data

Mode

architecture

 x_{i}

Supervised Learning

Deep Neural Network

Succession of simple linear data transformations interleaved with simple non-linearities

Deep Neural Network

Succession of simple linear data transformations interleaved with simple non-linearities

Deep Neural Network

Succession of simple linear data transformations interleaved with simple non-linearities

Learning transfer functions for simulating precipitation fields

Image to image translation

Learning the mapping (transfer function) between an input image and an output image (or between data modalities)

cGAN, Mirza & Osindero 2014

... and other generative models proposed in the last few years

U-NET, Ronneberger et al. 2015

Transfer funcions for precipitation

Rozas et al. 2019

"A data-driven approach to precipitation parameterizations using convolutional encoder-decoder neural networks"

Models for I2I translation tested: Segnet, VGG16, U-NET

ERA5 first tests

From ERA 5 (WeatherBench) geopotential to ERA 5 precipitation

ERA5 first tests

From ERA 5 (WeatherBench) specific humidity to ERA 5 precipitation

Adding ERA 5 variables

At this point, we include 15 different variables/layers:

- Temperature at Surface
- Temperature 100, 400, 850, 1000
- Cloud cover
- Geopotential 100, 400, 850, 1000
- Specific Humidity 100, 400, 850, 1000
- Solar radiation

Distributed deep learning

- Training using the BSC CTE-Power 9 cluster, using the 4 V100 GPUs of a single node
- Escalable to multiple nodes


```
from custom unet import custom unet
from train model import training logic
import tensorflow as tf
# strategy = tf.distribute.MirroredStrategy(['/gpu:0', '/gpu:1'])
strategy = tf.distribute.MirroredStrategy()
print ('Number of devices: {}'.format(strategy.num replicas in sync))
BUFFER SIZE = len(x train)
BATCH SIZE PER REPLICA = 64
GLOBAL BATCH SIZE = BATCH SIZE PER REPLICA * strategy.num replicas in sync
with strategy.scope():
    model mae = custom unet(x train[0].shape, filters=32,
                            use batch norm=True, dropout=0.3,
                            dropout change per layer=0.0,
                            num layers=4, output activation=None)
    trainining logic(model mae, x train, y train, x valid, y valid, x test, y test,
                    epochs=50, batchsize=GLOBAL BATCH SIZE, verbose=1,
                    optimizer='adam', loss='mae', lr=0.001,
                    plot='plt',
                    savetoh5=True,
                    savetoh5 path='./tmpdata/nn VARStoPRLR stand Unet mae.h5',
                    checkpoints=False,
                    checkpoint_dir='./training_checkpoints',
                    early_stopping=False, patience=5, min_delta=0.01,
                    returns=False)
    # with tf.device('/qpu:0'):
    y test hat mae = model mae.predict(x test)
```

From ERA 5 reanalysis to E-OBS precipitation

ERA 5 to E-OBS

- ERA5 reanalysis data (WeatherBench data at 1.4 deg, 1 hourly resampled to daily)
- E-OBS daily gridded precipitation (regridded to 1.4 deg)
 - Predicting the ERA5 precipitation is a rather methodological exercise
- Data from 1979 to 2018 (~14.6 k samples)
- Implementation of various models including deep neural networks for learning transfer functions
- Comparison in terms of MSE and Pearson correlation

Data

- 16 slices: 15 variables/levels plus a land sea mask (proper standardization)
- Dealing with NaNs (over the ocean) in E-OBS data:
 - NaNs to non-physical value
- ~14k samples, train/valid/test splitting
- Models, px-wise vs convolutionals:
 - Linear Regression (16 variables -> precipitation)
 - Random Forest (16 variables -> precipitation)
 - All (2D) convolutional network
 - U-NET (2D convolutions)
 - V-NET (3D convolutions)

40 px

Models

All convolutional net

Barcelona

Center

Similar to:

Rasp et al. 2020

Models

V-NET (Milletari et al. 2016) similar to U-NET but using volumetric (3D) convolutions.

Tran et al. 2015

Linear regression

Residuals

Random forest regression

- 0.25 - 0.20 - 0.15 - 0.10 - 0.05 - 0.00

All convolutional network

- 0.1

- 0.1

U-NET V-NET

Model	MSE	Pearson correlation	
Linear regression	1.70E-03	0.47	
Random forest regression	1.45E-03	0.58	
All convolutional network	1.10E-03	0.72	(~320 k pars)
U-NET	1.04E-03	0.71	(~500 k pars)
V-NET	9.73E-04	0.72	(~1.4 M pars)

Conclusions and next steps

- Deep neural networks (in a supervised context) yield impressive results on I2I tasks using NWP fields
- Same experiments with 0.25 deg E-OBS precipitation and ERA 5 variables
- Different strategies for exploiting multiple variables more independently
- Compare current results with generative models (conditional GANS)
- Validation with external observational precipitation data
- Downscaling
 - ERA 5 at 14 deg -> E-OBS original 0.25 degree resolution (Baño-Medina et al. 2019)
 - Use the sparse station measurements
- Forecasting
 - Use lead time to forecast future states (almost for free)
 - Global precipitation data?

