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Unsupervised

Clustering Dimensionality reduction Density estimation

Supervised

Regression Classification

Machine Learning

Reinforcement
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Supervised Learning

Loss function RegularizationOptimization
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Learning transfer
functions for simulating

precipitation fields



Image to image translation

cGAN, Mirza & Osindero 2014

U-NET, Ronneberger et al. 2015

Learning the mapping 

(transfer function) 

between an 

input image and an 

output image (or 

between data 

modalities)

Isola et al. 2017

... and other generative models proposed in the last few years



Transfer funcions for precipitation

Rozas et al. 2019

“A data-driven approach to 

precipitation parameterizations

using convolutional encoder-

decoder neural networks”

ERA Interim

geopotential

Models for I2I translation tested: 

Segnet, VGG16, U-NET



ERA5 first tests

From ERA 5 (WeatherBench) geopotential to ERA 5 precipitation

X

Y Ŷ



ERA5 first tests

X

Y Ŷ

From ERA 5 (WeatherBench) specific humidity to ERA 5 precipitation



Adding ERA 5 variables

At this point, we include 15 different variables/layers:

● Temperature at Surface

● Temperature 100, 400, 850, 1000 

● Cloud cover

● Geopotential 100, 400, 850, 1000 

● Specific Humidity 100, 400, 850, 1000

● Solar radiation



V-NET output

U-NET outputERA 5 precipitation

ERA 5 precipitation



Distributed deep learning

• Training using the BSC CTE-Power 9 cluster, using the 4 V100 GPUs of a single node

• Escalable to multiple nodes



From ERA 5 reanalysis
to E-OBS precipitation



ERA 5 to E-OBS

● ERA5 reanalysis data (WeatherBench data at 1.4 deg, 1 hourly resampled to daily)

● E-OBS daily gridded precipitation (regridded to 1.4 deg)

● Predicting the ERA5 precipitation is a rather methodological exercise

● Data from 1979 to 2018 (~14.6 k samples)

● Implementation of various models including deep neural networks for learning transfer funcions

● Comparison in terms of MSE and Pearson correlation

ERA5 variables E-OBS 

precipitation
Transfer

function



Data

● 16 slices: 15 variables/levels plus a land sea mask (proper standardization)

● Dealing with NaNs (over the ocean) in E-OBS data:

● NaNs to non-physical value

● ~14k samples, train/valid/test splitting

● Models, px-wise vs convolutionals:

● Linear Regression (16 variables -> precipitation)

● Random Forest (16 variables -> precipitation)

● All (2D) convolutional network

● U-NET (2D convolutions)

● V-NET (3D convolutions)

E-OBS precipitation

40 px

26 px



Input (26, 40, 16)
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Input (26, 40, 16)

PaddedConv2D
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Kernel: 3x3
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Models

U-NET inspired network

Similar to:

Ronneberger et al. 2015

Rozas et al. 2019

All convolutional net

Similar to:

Springerber et al. 2015

Rasp et al. 2020



Models

V-NET (Milletari et al. 2016) similar to U-NET but using volumetric (3D) convolutions. 

2D convolution with several

channels (e.g., RGB)

3D convolution

Tran et al. 2015



Linear 

regression

E-OBS ground truth

(single timestep)

Model comparison

Random

forest

regression

All

convolutional

network

Model output Residuals



U-NET

Model comparison

V-NET

E-OBS ground truth

(single timestep)

Model output Residuals



Model comparison
Linear Regression Random Forest All convolutional network



Model comparison
U-NET V-NET



Model comparison

Model MSE Pearson correlation

Linear regression 1.70E-03 0.47

Random forest regression 1.45E-03 0.58

All convolutional network 1.10E-03 0.72

U-NET 1.04E-03 0.71

V-NET 9.73E-04 0.72

(~320 k pars)

(~500 k pars)

(~1.4 M pars)



Conclusions and next steps

● Deep neural networks (in a supervised context) yield impressive results on I2I tasks using NWP fields

● Same experiments with 0.25 deg E-OBS precipiation and ERA 5 variables

● Different strategies for exploiting multiple variables more independently

● Compare current results with generative models (conditional GANS)

● Validation with external observational precipitation data 

● Downscaling

● ERA 5 at 14 deg -> E-OBS original 0.25 degree resolution (Baño-Medina et al. 2019)

● Use the sparse station measurements

● Forecasting

● Use lead time to forecast future states (almost for free)

● Global precipitation data?
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