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ML algorithms encrypt and magnify bias
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in geosciences...

large spread in climate prediction is often nowadays attributed to cloud radiative
effects — resolving clouds seems to be the way to go to reduce epistemic
uncertainty, however the ecosystem modelling community often expresses that
the GCM are biased because they do not resolve phytoplankton and in general
underrepresent the biological component

geographical areas we do not have as much observational data, modelling
groups,...

use ensemble means as it everything would be normally distributed

use deterministic solvers for differential equations with stochastic components
our physical models are built in blocks by different people at different institutions
at different times, with tons of simplifications, approximations, assumptions, and

empirical parameters and to make all work together we use tuning parameters
which do not have physical meaning and introduce compensation errors



ML algorithms can easily break the

the
fundamental
laws

of physics

energy and mass conservations, nonnegative
densities, precipitations,...

Noether's theorem explains why
conservation laws exists (wikipedia)



https://en.wikipedia.org/wiki/Noether%27s_theorem
https://en.wikipedia.org/wiki/Conservation_law_(physics)

Example:
lakes simulations

feature prediction
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Example:
fluid dynamics




e Black-box models

Humans cannot understand the cause of the decisions: knowing the value of the
parameters is not enough to infer what is going on and/or underlying
assumptions/limitations are unknown so it is hard to spot when these models are
biased.

Examples: Random forest, NN, ...



e Black-box models
Humans cannot understand the cause of the decisions: knowing the value of the
parameters is not enough to infer what is going on and/or underlying
assumptions/limitations are unknown so it is hard to spot when these models are
biased.

Examples: Random forest, NN, ...
e Interpretable models or Glass-box models
Humans can understand the cause of a decision: knowing the value of the

parameters helps and the underlying assumptions/limitations are known.

Examples: linear models, logistic regression, decision trees, naive Bayes,
and k-nearest neighbors.



The models are still black-boxes but we use some methods (based on surrogate
models) a posteriori to try to infer where the predictions came from.



The models are still black-boxes but we use some methods (based on surrogate
models) a posteriori to try to infer where the predictions came from.

e sensitivity analysis based on observing the effect of
perturbations on model components

e identify what features or feature values contributed the
most to the predictions (often presented in saliency maps)

e for every model, many available libraries (skitlearn,
Tensorflow,... or extensions)

7/ essential v/ feasible v/ add scientific value



Layer-wise
Relevance Propagation (LRP)
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single prediction, run again a back propagation that tracks what was activated and how
much (nice but )

https://github.com/atulshanbhag/Layerwise-Relevance-Propagation


https://github.com/atulshanbhag/Layerwise-Relevance-Propagation

Local Interpretable Model-agnostic Explanation (LIME)

single prediction, run an interpretable model with the black-box prediction as
target (superpixels)

https://github.com/marcotcr/lime, for time series: https://github.com/emanuel-metzenthin/Lime-For-Time


https://github.com/marcotcr/lime
https://github.com/emanuel-metzenthin/Lime-For-Time

Feature importance

Permutation importance: for any supervised model, just shuffle a feature of the validation data
and compare performance (what are important?)

Partial dependence plots: 1. select feature 2. define a grid 3. per grid value: a) replace feature
with grid value and b) average prediction 4. draw curve. (
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eli5 https://eli5.readthedocs.io/en/latest/,
Fuchs et al. 2018 (ACP) PDPBox https://pdpbox.readthedocs.io/en/latest/,...


https://eli5.readthedocs.io/en/latest/
https://pdpbox.readthedocs.io/en/latest/

Shapley Additive exPlanation (SHAP)

# summarize the effects of all the features
shap.summary_plot(shap_values, X)

High

Sex boﬂc- 206 o SR
Fare *—-ﬁ TR - o
Pclass —‘+ po stnfd- 3
[
>
Age o*m ]
]
SibSp come o + 8
uw
Embarked '."l
Parch °+-
T T T T T T Low
-04 -0.2 0.0 0.2 0.4 0.6

SHAP value (impact on model output)

1. single prediction, based on game theory, a prediction can be explained by assuming that
each feature value of the instance is a “player” in a game where the prediction of that instance
is the “payout”, in a linear world is easy, just adding the contributions, but here coalitions,
synergies, direction of the effect,... are considered.

2. do it for all of the prediction to get the global shapley values ( )

https://github.com/slundberg/shap


https://github.com/slundberg/shap

XAl techniques are not the ultimate solution: the surrogate models
bring their own assumptions and limitations, and are error-prone, an
interpretable model is always more trustable
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Parameterization
schemes



INTERPRETING AND STABILIZING MACHINE-LEARNING
PARAMETRIZATIONS OF CONVECTION

Noah D. Brenowitz!, Tom Beucler??, Michael Pritchard?, and Christopher S. Bretherton'

Predicting the behavior of NNs is tied to the difficult problem of interpreting NN emulators of
physical processes. [...] How can we tailor ML interpretability techniques [...] for the particular
purpose of interpreting NN parameterizations of convection?

1) Partial dependence plots to tests the nonlinear sensitivity of a single ML parametrization to
systematic changes in its inputs

2) Linear Response Functions (LRF) or saliency map extend the analysis to the full input
space of a parameterization. In a previous paper they computed LRFs to analyze what
was causing their NN parameterizations to produce unstable dynamics when coupled to a
GCM — reducing the potential for spurious causality by ablating both the upper
atmospheric temperature and humidity from the input features of an NN parameterization
results in a stable scheme [...] which demonstrates that ML interpretability techniques
have already significantly aided the development of ML parameterizations.

https://arxiv.ora/pdf/2003.06549v1.pdf



https://arxiv.org/pdf/2003.06549v1.pdf

“Dendrology” in Numerical Weather Prediction: What Random Forests and
Logistic Regression Tell Us about Forecasting Extreme Precipitation?

GREGORY R. HERMAN AND RUSS S. SCHUMACHER

Feature importance for Random Forest or Gini importance:

the number of splits based on the feature summed over the forest [...], it is normalized, an
importance of one then indicates that all decision nodes in every tree of the forest split on the
corresponding feature, while an importance of zero indicates that no decision node splits
based on that feature.

Permutation accuracy importance:
for each predictive feature, the feature value for each sample used to construct a given tree is

permuted to a different sample’s value. Importance is determined by the decline in the model’s
predictive performance when replacing the true values with the permuted ones.

https://journals.ametsoc.org/doi/10.1175/MWR-D-17-0307.1



https://journals.ametsoc.org/doi/10.1175/MWR-D-17-0307.1

Using Machine Learning to Parameterize Moist Convection:
Potential for Modeling of Climate, Climate Change,
and Extreme Events

Paul A. O'Gorman'""" and John G. Dwyer!

use the Random Forest parameterization to generate a Linear Response Function for
the response of convective precipitation to small perturbations in temperature, specific
humidity, and surface pressure.

use the concept of feature importance which seeks to measure the importance of the
different input features (here temperature and humidity at different levels and surface
pressure [...] for both the occurrence and strength of convection. [...] is implemented in
RandomForestRegressor class of scikit-learn.

[...] the feature importance is a useful additional diagnostic for the interaction of
convection with the large-scale environment.

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018MS001351



https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018MS001351

Applications of Deep Learning to Ocean Data Inference

and Subgrid Parameterization Machine Learning for Stochastic
Parameterization:
Thomas Bolton!' " and Laure Zannal Generative Adversarial Networks in the

Lorenz ‘96 Model

Could Machine Learning Break the Convection
Parameterization Deadlock?

P. Gentine' ", M. Pritchard® (", S. Rasp® |, G. Reinaudi’, and G. Yacalis®

Deep learning to represent subgrid processes in
climate models

Published: 22 July 2017 Stephan Rasp®”', Michael S. Pritchard®, and Pierre Gentine“

Parameterization of typhoon-induced ocean cooling
using temperature equation and machine learning e @ v ©0© OO

. ; A Deep Learning Algorithm of Neural Network for the
algorlthms: an example of typhoon Soulik (2013) Parameterization of Typhoon-Ocean Feedback in Typhoon

Forecast Models
Jun Wei &, Guo-Qing Jiang & Xin Liu

Guo-Qing Jiang, Jing Xu, Jun Wei

First published:26 March 2018 | https://doi.org/10.1002/2018GL077004 | Citations: 18
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BONUS TRACK SLIDE

Two types of uncertainty

Aleatoric: “what is the next outcome of tossing a coin?” related to
an individual experiment outcome, it is non-reducible with more
input data, it is the noise in the data.

Epistemic: “How much do | believe the coin is fair?” it is related to
the model’s belief after seeing the sample, it does reduce when
having more data.

moreno@dkrz.de
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ML are designed for interpolation, not extrapolation

pred Iction dots are the input, for
—— truth instance, observations
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solutions:
Gaussian Processes, Monte Carlo dropout,
deep ensembles, dropout ensembles, and
quantile regression

Florian Wilhelm: Are you sure about that?!

Uncertainty Quantification in Al | PyData...
PyData * 162 views * 1 month ago

PyConDE & PyData Berlin 2019 2
Py Oct 8-11, Kosmos, Borlin h“ P Y L

a !
'S
Fron.0L ‘
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Actually, there is a 3rd type of uncertainty:

Distribution shift: “Am | still flipping the same coin?” it is related to
changes of the underlying quantity of interest, we assume that
training and application data are i.i.d. but data drifts in time, we
apply the model to data from a different location, the labeller
changed,...
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e training data are not longer representative if the system has changed
e the accuracy of the trained model definitely decreased under data shift
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(b) ImageNet
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Can You Trust Your Model’s Uncertainty? Evaluating
Predictive Uncertainty Under Dataset Shift
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v | nature

Perspective | Published: 13 February 2019

Deep learning and process
understanding for data-
driven Earth system science

Markus Reichstein &, Gustau Camps-Valls, Bjorn Stevens,

Martin Jung, Joachim Denzler, Nuno Carvalhais & Prabhat

Nature 566, 195-204(2019) | Cite this article
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Conclusions

(2) Plausibility and interpretability of inferences
Models should not only be accurate but also credible,
incorporating the physics governing the Earth system.

(3) Uncertainty estimation
Models should define their confidence and credibility.
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Best practices (l):
Hybrid models

machine learning

models physical models

moreno@dkrz.de
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Best practices (ll):
put your model on diet

Select samples using domain knowledge (lakes, Navier-Stokes examples) ,
use XAl to identify and remove background, spurious correlations (leakage),...

Simonyan et al 2014
https://arxiv.org/pdf/1312.6034v2.pdf



https://arxiv.org/pdf/1312.6034v2.pdf
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Best practices (lll):
accuracy is not enough to evaluate the model skills

... the model was very accurate, but in classifying grass (cows example)
or it allowed for denser water up (lakes example)...

“We do not want a correct model, we want understanding”

Doshi-Velez and Kim, 2017
Towards A Rigorous Science of Interpretable Machine Learning
https://arxiv.org/abs/1702.08608

moreno@dkrz.de


https://arxiv.org/abs/1702.08608
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Best practices (lll):
call a human!

Calculate confidence intervals with uncertainty quantification techniques:

Conformal Predictors

MC dropouts

Deep Ensembles

Quantile regression

Gaussian processes (also to propagate distributed input data:
https://presentations.copernicus.org/EGU2020/EGU2020-14677

presentation.pdf)

and implement fallbacks if the confidence of the prediction is low.


https://presentations.copernicus.org/EGU2020/EGU2020-14677_presentation.pdf
https://presentations.copernicus.org/EGU2020/EGU2020-14677_presentation.pdf
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Maria Navarro: Quantifying uncertainty in

Machine Learning predictions | PyData...
PyData « 1.3K views * 6 months ago

Introduction to conformal predictions
Iogats be cvmburast predhdses

B e :

conformal predictors
https://github.com/donlnz/nonconformist

Florian Wilhelm: Are you sure about that?!
Uncertainty Quantification in Al | PyData...

PyConDE & PyData Berlin 2019 h" Py

Oct 8-11, Kosmos, Berlin

PyData « 162 views * 1 month ago

Florian Wilhelm
iover
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Vincent Warmerdam: How to Constrain
Artificial Stupidity | PyData London 2019

PyData « 3K views * 6 months ago

GOTO 2018 - Computers are Stupid:

Protecting "Al" from ltself « Katharine Jarmul
GOTO Conferences @ 1.3K views * 12 months ago
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Explainability added value

COLORADO STATE
\WY%7) UNIVERSITY

Viewing forced climate patterns
through an Al Lens

Elizabeth A. Barnes
Associate Professor
Colorado State University

December 11, 2019 @ %@‘AEVE

AGU 2019
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"Viewing Forced Climate Patterns through an Al Lens", Dec. 11, 2019.



