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Computer improvement slowing, data volumes growing

CPU performance slowing Data volumes growing

Source: Hennesey & Patterson, Computer Architecture: 
A Quantitative Approach, 6th Edition
‘

Source: Data Age 2025, sponsored by Seagate with data 
from IDC Global DataSphere, Nov 2018 
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Drowning in a Sea of Complexity

• Due to insufficient sustained computing power Earth system 
models can’t resolve key phenomena and timescales.

• Scientists try to describe the unresolved scales using human-
crafted physics parameterizations (equations that approximate 
the processes).

• Model software complexity grows, driven by the increasing 
complexity of these parameterizations. 

• Growing architectural complexity further hinders the ability to port 
and optimize complex Earth system model codes on new 
architectures. 

• Due to insufficient computing power models can’t resolve key 
phenomena and timescales.
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ICAS: Machine Learning and Data Drive HPC @ NCAR
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• Models are implemented in 
complex “one-off” code.

• Machine learning software 
implemented in reusable code. 

• Model algorithms are at odds with 
computer architectural trends.

• Data is a problem.

• Machine learning is well aligned 
with architectural trends.

• Data is still a problem, but 
with machine learning it is 
also an opportunity.

Traditional models Machine learning

Why machine learning?
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Goal: Evaluate how machine learning models perform both 
physically and computationally at representing physical processes.

• Surface Layer: machine learning parameterization trained from 
observations to minimize assumptions required by Monin-
Obukhov Similarity Theory (MOST)

• Microphysics: machine learning emulator trained on simulation 
data from a bin microphysics process is inserted into bulk 
microphysics scheme

• Secondary Organic Aerosols: can we use ML to emulate the 
incredibly complex chemistry of SOA formation?

Three candidate processes studied

Image Credits
Surface Layer Image: UK Met 
Office
Macroburst: Pete Mangione’s 
Pinpoint Weather Blog, August 
5, 2015
SOAs: Years of results 
regarding secondary organic 
aerosols reduce uncertainty in 
climate projections, May 12, 
2015 physics.org.

4



6th ENES Workshop on HPC for Climate and Weather

Motivation: Surface Layer Methods

• Regression is commonly used to estimate the stability 
functions used in M-O theory.

• Instead, we use machine learning algorithms to develop 
models relating surface stresses and fluxes to wind and 
temperature profiles.

• Most of the previous field studies used to determine 
stability functions were only a few months in length.

• To develop robust machine learning models, we need 
long observational records.

• We found only two data sets that provide suitable,
multiyear records

• Fit random forests and neural networks to each site to 
predict friction velocity, sensible heat flux, and latent 
heat flux

Cabauw, Netherlands
KNMI Mast
213 m tower

Data from 2003-2017

Scoville, Idaho, USA
FDR Tower
Flux tower

Data from 2015-2017
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Surface Layer Results

Key Updates
• Trained with 30-minute-

averaged data 
• Evaluated different subsets of 

predictors
• Added neural network 

surface layer 
parameterization to WRF

• Calculated variable 
importance rankings for 
different stability regimes 

StableUnstable
Cabauw Random Forest Regime Feature Importance 
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Surface Layer Conclusions

• Machine learning surface layer models can improve on estimating surface flux 
information over Monin-Obukhov

• Random forests and neural networks have similar amounts of error offline but perform 
differently within WRF

• Training at multiple sites improves generalization compared with training at one site
• Multi-site training challenge: inconsistencies in variables measured and heights of 

measurements
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Pilot Project 2: Microphysics Emulator

Precipitation formation is a critical uncertainty for weather and 
climate models.

Different sizes of drops interact to evolve from small cloud 
drops to large precipitation drops (right).

Detailed codes are too computationally expensive for large 
scale models, so empirical approaches are used.

Goal: Put increasingly detailed treatments into CAM6 physics 
and emulate them using ML techniques.
• Tel Aviv University scheme (35 bins)
• Superdroplet (Rothenberg) (~300 bins)

Question: Can ML approaches reproduce the effects of binned 
schemes without adding significant computational cost?

d: rain drop
c: cloud droplet

Image credit: Tapiado, et al., Empirical values and 
assumptions in the microphysics of numerical 
models, Atm. Res. 215, 2019, p 214-238.
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Bulk vs. Bin vs. Emulator Microphysics

Bulk scheme (MG2 in CAM6):
Calculate with a semi-empirical particle size 
distribution (PSD). Gamma distribution often used. 

Bin Scheme Divide particle sizes into bins and calculate 
evolution of each bin separately. Better representation of 
interactions but much more computationally expensive. 

Emulator Inputs
qc: cloud droplet mixing ratio
qr: rain drop mixing ratio
Nc: cloud droplet number concentration
Nr: rain drop number concentration
!: air density
Fc: Cloud fraction
Fr: Precipitation fraction

dqr/dt > 0?
ANN 

Classifier

dNc/dt < 0?
ANN 

Classifier

dNr/dt ≠ 0?
ANN 

Classifier

dqr/dt=0dqr/dt=
ANN 

Regressor

dNc/dt=
ANN 

Regressor

-dNr/dt=
ANN 

Regressor

dNc/dt=0 dNr/dt=0 +dNr/dt=
ANN 

Regressor

Yes No Yes No No< 0 > 0

dqc/dt=
-dqr/dt

Image credit: Andrew Gettelman, NCAR
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CAM6 Feedback Comparison

• Examined emergent properties in CAM6 
for MG2, TAU and TAU ML emulator

• Aerosol-Cloud Interactions are similar 
between TAU and TAU ML

• Shortwave cloud radiative feedbacks are 
higher in the southern hemisphere, 
especially for emulator

• Cloud fraction not being reduced as fast in 
TAU and emulator

Image credit: Andrew Gettelman, NCAR
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• The TAU microphysics emulator largely replicates the climate effects of the 
original TAU code

• Some feedback effects observed from use of emulator related to thickness 
of clouds

• Optimized TAU neural network CAM only runs about 8% slower than 
control CAM run with MG2; TAU run 300% slower

Microphysics Emulation Conclusions
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D#: GECKO-A Chemistry Model Emulation

● Goals
○ Build catalog of GECKO-A chemistry model runs under a diverse set of 

atmospheric conditions
○ Train neural network emulator from catalog
○ Run emulator in NWP model

● Accomplishments
○ Created catalog of GECKO-A runs for different molecules
○ GECKO-A run as box model with fixed atmospheric conditions and fixed 

initial amount of precursor
○ Evaluated large set of neural network hyperparameters.
○ Devised performance metrics for total gas, aerosol, and precursor species.

● Remaining Tasks
○ Training more complex neural networks
○ Completing GECKO-A catalog
○ Integration with an NWP model

Secondary Organic Aerosol yields for 
n-dodecane from GECKO-A simulation

ML 2020: GECKO-A Project

*Student Assistant-led project
Ms. Keely Lawrence, CU
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Thanks!
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