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Computer improvement slowing, data volumes growing

CPU performance slowing Data volumes growing
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Figure 1.1 Growth in processor performance over 40 years, This chart plots program perforr p relative to the VAX 11/780 as measured by
the SPEC integer benchmarks (see Section 1.8). Prior to the mid-1980s, growth in processor performance was largely technology-driven and
averaged about 22% per year, or doubling performance every 3.5 years. The increase in growth to about 52% starting in 1986, or doubling every 20
2 years, is attributable to more advanced architectural and organizational ideas typified in RISC architectures. By 2003 this growth led to a dif -
ference in performance of an approximate factor of 25 versus the performance that would have occurred if it had continued at the 22% rate. In
2003 the limits of power due to the end of Dennard scaling and the avallable instruction-level parallelism slowed uniprocessor performance to 5
23% per year until 2011, or doubling every 3.5 years. (The fastest SPECintbase performance since 2007 has had automatic parallelization turned g O
on, 50 uniprocessor speed is harder to gauge. These results are limited to single-chip systems with usually four cores per chip.) From 2011 to 2015, 5 - i - . . X -
the annual improvement was less than 12%, or doubling every 8 years in part due to the limits of parallelism of Amdahl's Law. Since 2015, with the g A L FAVAVA L FAVIL § A A L L A FAVYA LVL LVLL FAV/A FAVIA § FAVYA
end of Moore's Law, improvement has been just 3.5% per year, or doubling every 20 years! Performance for floating-point-oriented calculations s
follows the same trends, but typically has 1% to 2% higher annual growth in each shaded region. Figure 1.11 on page 27 shows the improvement
in clock rates for these same eras. Because SPEC has changed over the years, performance of newer machines is estimated by a scaling factor that w

relates the performance for different versions of SPEC: SPECB9, SPEC92, SPEC95, SPEC2000, and SPEC2006. There are too few results for SPEC2017
to plot yet.

Source: Hennesey & Patterson, Computer Architecture: Source: Data Age 2025, sponsored by Seagate with data
A Quantitative Approach, 6t Edition from IDC Global DataSphere, Nov 2018
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Drowning in a Sea of Complexity

* Due to insufficient sustained computing power Earth system
models can’t resolve key phenomena and timescales.

« Scientists try to describe the unresolved scales using human-
crafted physics parameterizations (equations that approximate
the processes).

* Model software complexity grows, driven by the increasing
complexity of these parameterizations.

« Growing architectural complexity further hinders the ability to port
and optimize complex Earth system model codes on new
architectures.

« Due to insufficient computing power models can’t resolve key
phenomena and timescales.
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Why machine learning?

Traditional models Machine learning
* Models are implemented in * Machine learning software
complex “one-off” code. implemented in reusable code.
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« Model algorithms are at odds with = Machine learning is well aligned
computer architectural trends. with architectural trends.

» Data is a problem. » Data is still a problem, but
with machine learning it is
also an opportunity.

ICAS: Machine Learning and Data Drive HPC @ NCAR



Three candidate processes studied

Goal: Evaluate how machine learning models perform both
physically and computationally at representing physical processes.

Surface Layer: machine learning parameterization trained from
observations to minimize assumptions required by Monin-
Obukhov Similarity Theory (MOST)

Microphysics: machine learning emulator trained on simulation
data from a bin microphysics process is inserted into bulk
microphysics scheme

Secondary Organic Aerosols: can we use ML to emulate the
incredibly complex chemistry of SOA formation?

6t ENES Workshop on HPC for Climate and Weather

Image Credits

Surface Layer Image: UK Met
Office

Macroburst: Pete Mangione’s
Pinpoint Weather Blog, August
5, 2015

SOAs: Years of results
regarding secondary organic
aerosols reduce uncertainty in
climate projections, May 12,
2015 physics.org.




Motivation: Surface Layer Methods

Regression is commonly used to estimate the stability
functions used in M-O theory.

Instead, we use machine learning algorithms to develop
models relating surface stresses and fluxes to wind and
temperature profiles.

Most of the previous field studies used to determine
stability functions were only a few months in length.

To develop robust machine learning models, we need
long observational records.

) . Cabauw, Netherlands Scoville, Idaho, USA
We found only two data sets that provide suitable, KNMI Mast FDR Tower
multiyear records 213 m tower Flux tower
Data from 2003-2017 Data from 2015-2017

Fit random forests and neural networks to each site to
predict friction velocity, sensible heat flux, and latent
heat flux
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Surface Layer Results

Temperature Scale Error Distributions
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Surface Layer Conclusions
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Machine learning surface layer models can improve on estimating surface flux
information over Monin-Obukhov

Random forests and neural networks have similar amounts of error offline but perform
differently within WRF

Training at multiple sites improves generalization compared with training at one site

Multi-site training challenge: inconsistencies in variables measured and heights of
measurements
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Pilot Project 2: Microphysics Emulator

Precipitation formation is a critical uncertainty for weather and : (d)
climate models. y d W d
O O
Different sizes of drops interact to evolve from small cloud c c
drops to large precipitation drops (right). o o
autoconversion rain accretion

Detailed codes are too computationally expensive for large
scale models, so empirical approaches are used.

Oa

\%/
Oa

d: rain drop

Goal: Put increasingly detailed treatments into CAM6 physics
Iy Phy c: cloud droplet g

and emulate them using ML techniques.
« Tel Aviv University scheme (35 bins)
« Superdroplet (Rothenberg) (~300 bins) self-collection

Question: Can ML approaches reproduce the effects of binned

schemes without adding significant computational cost?
Image credit: Tapiado, et al., Empirical values and
assumptions in the microphysics of numerical
models, Atm. Res. 215, 2019, p 214-238.
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Bulk vs. Bin vs. Emulator Microphysics

Bulk scheme (MG2 in CAMS6):
Calculate with a semi-empirical particle size
distribution (PSD). Gamma distribution often used.

Bin Scheme Divide particle sizes into bins and calculate
evolution of each bin separately. Better representation of
interactions but much more computationally expensive.
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Emulator Inputs
g, cloud droplet mixing ratio
g, rain drop mixing ratio
N_: cloud droplet number concentration
N,: rain drop number concentration
p: air density
F: Cloud fraction
F: Precipitation fraction

dg/dt > 0?
ANN

dN/dt = 0?
ANN

dN,/dt < 0?
ANN

Classifier Classifier Classifier

Image credit: Andrew Gettelman, NCAR




CAMG6 Feedback Comparison

Examined emergent properties in CAM6
for MG2, TAU and TAU ML emulator
Aerosol-Cloud Interactions are similar
between TAU and TAU ML

Shortwave cloud radiative feedbacks are
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Image credit: Andrew Gettelman, NCAR
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Microphysics Emulation Conclusions
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The TAU microphysics emulator largely replicates the climate effects of the
original TAU code

Some feedback effects observed from use of emulator related to thickness
of clouds

Optimized TAU neural network CAM only runs about 8% slower than
control CAM run with MG2; TAU run 300% slower
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ML 2020: GECKO-A Project

[ J Goals Total number of GECKO-A simulations: 2000
o Build catalog of GECKO-A chemistry model runs under a diverse set of {3%;: Eﬂmﬁii 3} fé’;ﬂﬁﬁsﬁﬁé?s‘ L
atmospheric conditions 20 ] ol
o Train neural network emulator from catalog 1200 B e () L tamdoa,

o Run emulator in NWP model 100
e Accomplishments ]

o Created catalog of GECKO-A runs for different molecules

o  GECKO-A run as box model with fixed atmospheric conditions and fixed

initial amount of precursor

o Evaluated large set of neural network hyperparameters.

o Devised performance metrics for total gas, aerosol, and precursor species.
e Remaining Tasks

o Training more complex neural networks 1 45 : n-dodecane |

o Completing GECKO-A catalog ot

o Integration with an NWP model 102 10" 10° 10’ 102
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Secondary Organic Aerosol yields for
n-dodecane from GECKO-A simulation

*Student Assistant-led project = 5
Ms. Keely Lawrence, CU
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