Evaluating Convection and Tropical Tropopause Layer Cirrus in the DYAMOND Simulations

Jacqueline Nugent, Sami Turbeville, Chris Bretherton, Tom Ackerman, Peter Blossey

University of Washington Department of Atmospheric Sciences

6th ENES HPC Workshop Session I:Very High-Resolution Modeling 25 May 2020

TTL cirrus have a significant contribution to the climate.

- Definition: TTL ≈ 14-18 km layer (Schoeberl et al. 2019)
- TTL cirrus:
 - Net warming effect locally
 - Prevalent over tropics
 - Long lifetime, and can be advected large distances (600-1000 km)
- However, the role of TTL cirrus in climate change is still uncertain

Modified from Fig. 2: Sassen et al. (2009), JGR

TTL cirrus have a significant contribution to the climate.

Modified from Fig. 2: Sassen et al. (2009), JGR

TTL cirrus are strongly related to convection.

- TTL cirrus can form from convective detrainment
- Overshooting convection (>14km) provides moisture, lift, and ice in TTL
 - Thicker cirrus more frequent near deep convection
 - Growth often occurs after deep convection decays
- ... but not much is known about the rest of their life cycle

Modified from Fig. 1: Jensen et al. (2017), BAMS

There are several challenges with studying TTL cirrus.

- Observations are difficult to obtain:
 - Occur at a high altitude and often over strong convection
 - Very optically thin ($\tau \approx 0.02-0.3$)

There are several challenges with studying TTL cirrus.

- Observations are difficult to obtain:
 - Occur at a high altitude and often over strong convection
 - Very optically thin ($\tau \approx 0.02-0.3$)
- Previous modeling studies have been limited:
 - A high spatiotemporal resolution is needed
 - TTL cirrus generally have **poor representation in GCMs**:
 - Accurate representation of diurnal cycle of deep convection is particularly difficult, especially over land
 - Improves with non-parameterized convection (e.g. Berthou et al. 2019, 4.5 km resolution)

There are several challenges with studying TTL cirrus.

- Observations are difficult to obtain:
 - Occur at a high altitude and often over strong convection
 - Very optically thin ($\tau \approx 0.02-0.3$)
- Previous modeling studies have been limited:
 - A high spatiotemporal resolution is needed
 - TTL cirrus generally have **poor representation in GCMs**:
 - Accurate representation of diurnal cycle of deep convection is particularly difficult, especially over land
 - Improves with non-parameterized convection (e.g. Berthou et al. 2019, 4.5 km resolution)

Solution: DYAMOND intercomparison - high resolution, explicit convection

DYAMOND Analysis

DYnamics of the Atmospheric general circulation Modeled On Non-hydrostatic Domains

- 9 global storm-resolving models
- Initialized with same conditions
- Run for 40 days
 - Hindcast: Aug I Sep 10, 2016

Most importantly:

- High resolution: <5 km horizontal; I5 min (2D fields) and 3h (3D fields) temporal
- Deep convection **not** parameterized

DYAMOND Analysis

DYnamics of the Atmospheric general circulation Modeled On Non-hydrostatic Domains

- 9 global storm-resolving models
- Initialized with same conditions
- Run for 40 days
 - Hindcast: Aug I Sep 10, 2016

Most importantly:

- High resolution: <5 km horizontal;
 15 min (2D fields) and 3h (3D fields) temporal
- Deep convection **not** parameterized

ICON

FV3 GEOS5

NICAM SAM

DYAMOND Analysis Overview

Model	Grid	Horizontal Resolution	Vertical Resolution (number of levels)	Microphysics
FV3	cubed sphere	3.25 km	79 (8 in TTL)	GFDL single-moment cloud microphysics
ICON	icosahedral	2.5 km	77 (8 in TTL)	COSMO single- moment scheme
GEOS5	cubed sphere	3 km	132 (13 in TTL)	GFDL microphysics
SAM	latitude-longitude	4 km	74 (8 in TTL)	Single-moment
NICAM	icosahedral	3.5 km	78 (10 in TTL)	NICAM single- moment

Other models: ARPEGE-NH (2.5 km), IFS (4 km), MPAS (3.75 km), and UM (5 km)

Analysis Region: 10°x10° box in West Africa (Sahel)

Focus on convection over land:

- Less frequent, but more intense
- More variation, especially diurnal cycle (afternoon peak)
- More overshooting convection (Liu and Zipser 2005)
 - A large proportion occurs over Africa (Fierli et al. 2011)
- Frequent deep convection during summer (West African Monsoon)
- Transitions from moist to arid climate regions

Analysis Region: 10°x10° box in West Africa (Sahel)

Main Questions

- Can we use very high-resolution models as a tool to study how TTL cirrus evolve in relation to convection?
 - How well do the DYAMOND models simulate TTL cirrus and convection?
 - What are the similarities and differences between models?

Outgoing longwave radiation (OLR) agrees well with observations.

CERES: I° grid, hourly data DYAMOND: native grid, hourly mean

Average OLR: I-10 August

FV3: 247.72 Wm⁻² **ICON**: 248.56 Wm⁻² **CERES**: 238.90 Wm⁻²

FV3 and ICON have similar cloud structure...

Single I°xI° box, native grid

TRMM: 2006-2016 combined instrument rainfall estimate; 0.25°, 3 hourly

... but the other models are very different.

Single I°xI° box, native grid

TRMM: 2006-2016 combined instrument rainfall estimate; 0.25°, 3 hourly

Most models agree on accumulated precipitation.

10°x10° box, 0.1° grid

The texture of convection is realistic.

10°x10° box, native grid (precip), 0.1° grid (IWP)

FV3 <u>40-day average:</u> 87.98% convective, 12.02% stratiform

ICON <u>40-day average:</u> 99.86% convective, 0.14% stratiform

Definition: stratiform < 1 mm/hr

19:00 UTC 06 Aug 2016 Sahel

There are very large differences in IWP.

10°x10° box, 0.1° grid

DARDAR: Aug 2009 combined radar/lidar retrievals MODIS/CERES: JAS 2007-2010, 0.3° footprint

Models miss the total ice water path distribution.

IWP + SWP + GWPGWP IWP SWP DARDAR FV3 **ICON** GEOS5 SAM 0.05 0.05 0.05 0.05 0.05 Fraction of Profiles 0.03 0.03 0.03 0.01 0.01 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 $0.00 \stackrel{\frown}{10^{-1}} 10^{0}$ $0.00 \stackrel{\bullet}{10^{-1}} 10^{0}$ $0.00 10^{-1} 10^{0}$ $0.00 10^{-1} 10^{0}$ $10^1 \ 10^2$ $10^3 \ 10^4$ $10^1 \ 10^2$ 10³ $10^1 \ 10^2 \ 10^3$ 104 101 10² 10³ 10^{4} 10^{4} g/m² g/m² g/m² g/m² g/m² NICAM MPAS IFS **ARPEGE-NH** UM 0.05 0.05 0.05 0.05 0.05 Fraction of Profiles SWP and GWP SWP and GWP SWP and GWP 0.04 0.04 0.04 0.04 not available not available not available 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 $0.00 10^{-1} 10^{0}$ $\begin{array}{c} 0.00 \\ 10^{-1} \\ 10^{0} \\ 10^{1} \\ 10^{2} \\ 10^{3} \\ 10^{4} \end{array}$ $0.00 10^{-1} 10^{0} 10^{1} 10^{2} 10^{3} 10^{4}$ $\begin{array}{c} 0.00 \\ 10^{-1} 10^{0} 10^{1} 10^{2} 10^{3} \end{array}$ $0.00 10^{-1} 10^{0}$ $10^1 \ 10^2 \ 10^3 \ 10^4$ $10^1 \ 10^2$ 10³ 10^{4} 10^{4} g/m² g/m² g/m² g/m^2 g/m²

DARDAR: August 2009 combined radar/lidar retrievals

10°x10° box, 0.1° grid

Models disagree on the vertical distribution of ice.

10°x10° box, native grid

DARDAR: August 2009 combined radar/lidar retrievals

Models disagree on the vertical distribution of ice.

10°x10° box, native grid

DARDAR: August 2009 combined radar/lidar retrievals

TTL ice water content is even less consistent.

10°x10° box, native grid

Large disagreement in max. 14km vertical velocity

10°x10° box, native grid

Summary and Conclusions

- Overall, FV3 and ICON realistically simulate the structure and qualitative texture of deep convection
 - FV3: deeper convection, more stratiform precipitation, more cloud ice
 - SAM, NICAM and GEOS not quite as similar
- There are large differences in the distribution of ice and vertical velocity between models
 - Differences in model dynamics and microphysics
 - Amount and extent of ice in TTL especially is very different
- Further refinements in vertical resolution (esp. at high altitudes) and model microphysics are needed to improve simulation of TTL cirrus

Acknowledgements

2nd DYAMOND-ESiWACE Hackathon, 19-21 June 2019