
PySDM:
Bridging performance and pythonicity
with Numba, Pythran and ThrustRTC
Piotr Bartman

016th ENES HPC Workshop, 26 May 2020

02

ABOUT THE PROJECT

Atmospheric Cloud Simulation Group
Faculty of Mathematics and Computer Science,
Jagiellonian University in Kraków, Poland

Super-droplet method (SDM) in Python: PySDM

Our projects:
http://github.com/atmos-cloud-sim-uj/PySDM

Jagiellonian University
Author: Jan Mehlich

03

PySDM
CFD/Monte-Carlo simulations
in aerosol-cloud-rain physics

cloud physicists
developers of parameterisations

novel modelling methods

leveraging modern hardware and cloud computing
maintainability and reproducibility requirements
(of journals and scientific method)

Potential users:

for weather & climate models
Motivation:

(probabilistic particle-based simulation)

A
uthor: Yevgen Tim

ashov N
ational G

eographic

04

“(...) code must be made accessible during the review process”
„(...) no manual processing of the data: models are run by a script,
and all pre- and post-processing is scripted”
„(...) figures and tables must be scientifically reproducible from the
scripts”
„(...) if the code is not ready, then neither is the manuscript”

 new 2019 GMD journal policy, doi:10.5194/gmd-12-2215-2019

PySDM
reproducibility goals

05

Code is read much more often than it is written

Code readable - performance trade off
„‘two-language problem’ — researchers often prototype
algorithmsin a user-friendly language such as Python but then have
to rewritethem in a faster language (...)”*

Pythonicity

*Nature 2019 `̀toolbox'' column (on Julia), doi: 10.1038/d41586-019-02310-3

def proj(vx, vy, vz, kx, ky, kz, inv_k_square_nozero):
 tmp = (kx * vx + ky * vy + kz * vz) * inv_k_square_nozero
 return vx - kx * tmp, vy - ky * tmp, vz - kz * tmp

subroutine proj(res, vx, vy, vz, kx, ky, kz, inv_k_square_nozero, N0, N1, N2)

 implicit none

 ! Input/Output
 integer, intent(in) :: N0, N1, N2
 double precision, intent(in) :: vx(2, N2, N1, N0), vy(2, N2, N1, N0), vz(2, N2, N1, N0)
 double precision, intent(in) :: kx(N2, N1, N0), ky(N2, N1, N0), kz(N2, N1, N0)
 double precision, intent(in) :: inv_k_square_nozero(N2, N1, N0)
 double precision, intent(out) :: res(2, 3, N2, N1, N0)

 ! Locals
 double precision :: tmp(2)
 integer:: i, j, k

 do k = 1, N0
 do j = 1, N1
 do i = 1, N2
 tmp(1:2) = (kx(i,j,k) * vx(1:2,i,j,k) &
 + ky(i,j,k) * vy(1:2,i,j,k) &
 + kz(i,j,k) * vz(1:2,i,j,k)) * inv_k_square_nozero(i,j,k)

 res(1:2,1,i,j,k) = vx(1:2,i,j,k) - kx(i,j,k) * tmp(1:2)
 res(1:2,2,i,j,k) = vy(1:2,i,j,k) - ky(i,j,k) * tmp(1:2)
 res(1:2,3,i,j,k) = vz(1:2,i,j,k) - kz(i,j,k) * tmp(1:2)
 enddo
 enddo
 enddo

end subroutine proj

=

06

PySDM
technological stack and workflows

Pythran

open source
automated tests
code coverage

LLVM
multi-threading
GPU computation

interactive exapmles &
tutorials

General:

Python acceleration:

User interface:

PySDM
architecture

07

MPyDATA
(eulerian advection)

Jupyter

PySDM
(core)

microphysics
logic

Computational
Backend

(Numba, Pythran,
ThrustRTC)
compilation,

parallelization

Control
Data

Reductions

compiler for Python functions
generates optimized machine code from pure Python
code using the LLVM compiler infrastructure
on-the-fly code generation
native code generation for the CPU and GPU hardware
integration with the Python scientific software stack
(thanks to Numpy)

08

Numba
numba.pydata.org | github.com/numba/numba/

in-place out-of-place (with memory allocation)

Mohanan et al. 2019, doi:10.5334/jors.238

PySDM - Numba
maintainability & performance

09

ahead of time compiler for a subset of the Python
language, with a focus on scientific computing
takes a Python module annotated with a few interface
description and turns it into a native Python module with
the same interface
meant to efficiently compile scientific programs
focus on of multi-cores and SIMD instruction units

10

Pythran
pythran.readthedocs.io | github.com/serge-sans-paille/pythran

in-place out-of-place (with memory allocation)

Mohanan et al. 2019, doi:10.5334/jors.238

Pythran

library of general GPU algorithms, functionally similar
to Thrust, that can be used in non-C++ programming
launguages (Python)
Thrust (docs.nvidia.com/cuda/thrust):

high-level interface enabling performance portability
between GPUs and multicore CPUs
Interoperability with established technologies (such as
CUDA, TBB, and OpenMP)

CURandRTC: random number generator using the
XORWOW algorithm

 11

ThrustRTC
github.com/fynv/ThrustRTC | github.com/fynv/CurandRTC

+ CURandRTC

PySDM - ThrustRTC
maintainability & performance

12

13

ThrustRTC vs Numba
github.com/atmos-cloud-sim-uj/PySDM/tree/master/PySDM_examples/ICMW_2012_case_1

async - computations on the CPU
are overlapped with
computations on the accelerator

Numba - CPU multi-threading
ThrustRTC - GPU resident

14

PySDM
portability

15

16

PySDM
lessons learned

portable and pure-python (yet not fully pythonic;
OOP kills performance)
easy debbuging
little-to-no control over (and huge performance
sensitivity to) inlining/optimization

essentially equivalent performance and
parallelization features as Numba (both based on
LLVM and OpenMP)
cross-platform support is low-priority

Numba:

Pythran:

Pythran

17

PySDM
lessons learned

viable high-level Python abstractions for parallel
GPU computations
tricky debugging for custom kernels (CUDA-free C
code in Python strings)
no option to execute on CPU/threads (unlike
original Thrust)

ThrustRTC (+CURandRTC):

Special thanks for Numba, Pythran, ThrustRTC
developers for quickly responses (2, 5, 1 fixed issues
respectively)

MORE:
github.com/atmos-cloud-sim-uj/PySDM
github.com/piotrbartman
mail: piotr.bartman@student.uj.edu.pl

