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● Introduction: 
○ Motivation
○ Tools: MONARCH & CAMP

● Implementations:
○ Multi-cells 
○ GPU Multi-cells Derivative

● Conclusions and future work

> Preliminary work on exploiting GPU capacity <  



Motivation

3



Motivation | Tools | Multi-cells | GPU Multi-cells Derivative | Conclusions

Atmospheric models are a mathematical representation 
of atmospheric water, gas, and aerosol cycles.

Atmospheric models
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Chemical mechanism
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Chemistry in the GPU: CUDA
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...and more

Michail Alvanos and Theodoros Christoudia, GPU-accelerated 
atmospheric chemical kinetics in the ECHAM/MESSy (EMAC) Earth 
system model , 2017

Kyle E. Niemeyera,b,1, Chih-Jen Sungb,  
Accelerating moderately stiff chemical kinetics in 
reactive-flow simulations using GPUs, 2018

Moderately stiff reactions: Complete chemical mechanism:



Motivation | Tools | Multi-cells | GPU Multi-cells Derivative | Conclusions

Our goal

● Challenges Addressed

○ Isolated treatment of physical/chemical processes

○ Huge heterogeneous codebase

○ Efficient solving of complex physical/chemical systems

● How we do it

○ Integrated stand-alone chemistry solver

○ Standardized description of physical/chemical processes

○ Porting high-cost functions to GPUs

○ Simultaneous solving of multiple grid-cells
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MONARCH: Multiscale On-line Atmosphere 
Chemistry Model

Multiscale Model from Global to 

Local Scales

~20%

~80%
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Host model

Aerosol Representation
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Atmospheric chemistry - CAMP* module

*Chemistry Accross Multiple Phases
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ODE Solver
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● Purpose: Iteratively solves y’=f(t,y) using a Backward 
Differentiation Formula (CVODE) and the SuiteSparse 
KLU Linear Solver

● Needs: f(y) and J = ∂f /∂y (Derivative & Jacobian)
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ODE Solver
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Multi-Cells
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CAMP workflow in MONARCH
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CAMP workflow in MONARCH
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CAMP workflow in MONARCH
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Cells are not 
interdepende
nt w.r.t. 
chemistry
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CAMP: Multi-cells
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Group cells 
data
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CAMP: Multi-cells
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● Species 
“replication”: 
O31, O32.. ON

● Common 
ODE solver 
parameters
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Test environment
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● Plaftorm: CTE-POWER cluster, each node with:
○ 2 x IBM Power9 8335-GTH @ 2.4GHz
○ 4 x GPU NVIDIA V100 (Volta)
○ GCC version 6.4.0 and NVCC version 9.1

● Configuration: Basic

Mechanism Reactions Species Cells* GPUs MPI 
processes

Basic 
(One-cell)

2 3 100 -
10,800

0 1

Basic 
(Multi-cell)

2 3 100 -
10,800

0 1

*10,800 cells is the common configuration per each MPI MONARCH node
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CPU Multi-cells: Results
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○ Reduced ODE solver iterations
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CPU Multi-cells: Results
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GPU Multi-cells 
Derivative
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Derivative: f(y) 
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● A reaction:

● Derivative:

c = stoichiometric coefficient
t = time
r = rate
j = reaction
i = species
y

i 
= concentration of species i

m = number of reactants
n = number of products
p = number of reactions
w = number of species
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CAMP: Multi-cells
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f
i
 = derivative

t = time
j = reaction
i = species
k = cell
y

ik 
= concentration of species i in cell k

p = number of reactions
q = number of cells
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GPU Multi-cells
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Reaction & Cell parallelization

f
i
 = derivative

t = time
r = rate
j = reaction
i = species
k = cell
y

ik 
= concentration of species i in cell k

p = number of reactions
q = number of cells
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Test environment
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● Plaftorm: CTE-POWER cluster, each node with:
○ 2 x IBM Power9 8335-GTH @ 2.4GHz
○ 4 x GPU NVIDIA V100 (Volta)
○ GCC version 6.4.0 and NVCC version 9.1

● Configuration: Basic GPU

Mechanism Reactions Species Cells* GPUs MPI 
processes

Basic (GPU) 2 3 100-
10,800

1 1

Basic (Multi-cell) 2 3 100 -
10,800

0 1

*10,800 cells is the common configuration per each MPI MONARCH node
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GPU Multi-cells: Results
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GPU Multi-cells: Data & Compute
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Mechanism Species Cells GPUs Processes

Basic (GPU) 3 131072 1 1

Basic (MPI) 3 131072 0 40



Conclusions
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Conclusions
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● Multi-cell approach makes solving 12–14 times faster

-> Simultaneously solving cells reduces solver iterations

● Porting solver functions to GPUs coupled with multi-cell 
treatment improves chemistry solving by 7–21×

-> Maximizing parallelization improves GPU functions

● Data movement accounts for most multi-cell GPU 
computation time for large numbers of grid-cells

-> Search for alternatives (async & more computation)
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Future work
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● Porting all solver functions to GPUs will reduce data 
movement and improve efficiency (Ongoing work)

● Load balancing GPU & CPU + asynchronous communication

● Evaluate GPU-based chemistry solving in MONARCH
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Ongoing work: Linear solving
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● Adapting more ODE functions to GPU: Linear solving



Thank you 

christian.guzman@bsc.es
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Derivative GPU
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● Parallelize reactions loop

● Add data transfer 

● Atomic operations
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Initial CPU-based CAMP
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GPU Multi-cells: Memory & Compute
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CAMP GPU vs KPP GPU
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CAMP GPU (including future work) vs KPP 
GPU
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GPU Multi-cells: Block processing
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Platform
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CTE-POWER:

2 login nodes and 52 compute nodes, each of them:

- 2 x IBM Power9 8335-GTH @ 2.4GHz (3.0GHz on turbo, 20 
cores and 4 threads/core, total 160 threads per node)

- 512GB of main memory distributed in 16 dimms x 32GB @ 
2666MHz

- 2 x SSD 1.9TB as local storage
- 4 x GPU NVIDIA V100 (Volta) with 16GB HBM2.
- GPFS via one fiber link 10 GBit
- Compilers: GCC version 6.4.0 and NVCC version 9.1
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Reaction data

reaction type
int data size
float data size

int reaction 
params

float reaction 
params

3 int 3-100 * [int] 3-30 * [float]

Reaction 1 Reaction 2

reaction type
int data size
float data size

int reaction 
params

float 
reaction 
params

reaction type
int data size
float data size

int reaction 
params

reaction type
int data size
float data size

int reaction 
params

Reaction 1 Reaction 2

float reaction 
params

float 
reaction 
params

Reaction 1 Reaction 2

[int] array

[float] array

3 int 3-100 * [int] 3-30 * [float]


