

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Accelerating Chemistry Modules in Atmospheric Models using GPUs

Christian Guzman Ruiz, Mario C. Acosta, Matthew Dawson*, Oriol Jorba, Carlos Pérez García-Pando, Kim Serradell

Earth Sciences Department *Currently at National Center for Atmospheric Research (NCAR)

26/05/2020

ENES

Outline

- Introduction:
 - Motivation
 - Tools: MONARCH & CAMP
- Implementations:
 - Multi-cells
 - GPU Multi-cells Derivative
- Conclusions and future work

> Preliminary work on exploiting GPU capacity <</p>

Motivation

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Atmospheric models

Atmospheric models are a **mathematical representation** of atmospheric water, gas, and aerosol cycles.

Chemical mechanism

Reaction Number	Reaction	Rate Cons	Reaction						
	Inorganic Chemistry	1	Number	Reaction Rate Constant,		tant, k'	Note		
(1)	(1) $NO_2 + h\nu \xrightarrow{O_2} NO + O(^2P)$ J _{NO2} Carbonyl Chemistry								
(2) (3)	$NO_3 + h\nu \rightarrow 0.89NO_2 + 0.89O(^3P) + 0.11NO$ $HNO_2 + h\nu \rightarrow OH + NO$	J _{NOn} J _{HNOn}	(50)	$HCHO + h\nu \xrightarrow{\sim} 2\PiO_2 + CO$ $HCHO + h\nu \longrightarrow CO$	JHCHON		13,18		
(4)	$HNO_3 + h\nu \longrightarrow OH + NO_2$	$J_{\rm IINO_3}$	(52)	$HCHO + OH \xrightarrow{O_2} HO_2 + CO$	1.0×10^{-11}				
(5)	$HNO_4 + h\nu \longrightarrow HO_2 + NO_2$ $O_2 + h\nu \longrightarrow O(^3P)$	JHNO4	(52)	$HCHO + NO_2 \xrightarrow{O_2} HNO_2 + HO_2 + CO$	$3.4 \times 10^{-13} \text{ evo} (-$	Reaction			
(7)	$O_3 + h\nu \longrightarrow O(^1D)$	JOSB	(54)	$ALD2 + hy \frac{2O_3}{CH_2O_2} CH_2O_2 + HO_2 + CO$	June .	Number	Reaction	Rate Constant, k^{\dagger}	Note
(8)	$H_2O_2 + h\nu \longrightarrow 2OH$ $O(^3D) + O_2 \longrightarrow O(^3P) + O_2$	$J_{\rm H_2O_2}$	(55)	$ALD2 + OH \rightarrow C_2O_3$	$5.6 \times 10^{-12} \exp(2$		Omenia Hedronensidar		
(10)	$O(D) + O_2 \longrightarrow O(P) + O_2$ $O(^1D) + N_2 \longrightarrow O(^3P) + N_2$	$1.8 \times 10^{-11} \exp{(11)}$	(56)	$ALD2 + NO_3 \xrightarrow{O_2} C_2O_3 + HNO_3$	$1.4 \times 10^{-12} \exp(-$	(90)	CH OOH : bu O2 HOHO : HO. : OH	7	
(11)	$O(^{1}D) + H_{2}O \longrightarrow 2OH$	2.2×10^{-10}	(57)	AONE + $h\nu \xrightarrow{2O_3} C_2O_3 + CH_3O_3$	JAONE	(87)	$ETHOOH + h\nu \longrightarrow ALD2 + HO_2 + OH$	Same as reaction (86)	9.11
(12)	$O(^{3}P) + O_{2} \xrightarrow{M} O_{3}$	F(6.0(-34), 2.3, 0.0)	(58)	$AONE + OH \longrightarrow ANO2$	$T^{2}5.3 \times 10^{-18} \exp$	(88)	$ROOH + h\nu \longrightarrow OH + 0.4XO_2 + 0.74AONE + 0.3ALD2$	same as reaction (86)	9.11
(13)	$O(^{\circ}P) + O_3 \longrightarrow O_2 + O_2$ $O(^{\circ}P) + NO_2 \longrightarrow NO$	$8.0 \times 10^{-12} \exp(-$ $6.5 \times 10^{-12} \exp(-$	(59)	$MGLY + h\nu \longrightarrow C_2O_3 + CO + IIO_2$	$9.64 \times J_{HCHOs}$	(00)	+ 0.1ETHP + 0.9HO ₂ - 1.98PAR	0.0 to=12 (ass (m)	1000
(15)	$O(^{3}P) + NO_{2} \xrightarrow{M} NO_{3}$	F(9.0(-32), 2.0, 2.2	(60)	$MGLY + OH \longrightarrow XO_2 + C_2O_3$ $MGLY + NO_2 \longrightarrow HNO_2 + C_2O_3 + CO_3$	1.7×10^{-12} evo (-	(89)	$CH_3OOH + OH \longrightarrow 0.7CH_3O_2 + 0.3HCHO + 0.3OH$ ETHOOH + OH $\longrightarrow 0.7ETHP + 0.3ALD_2 + 0.3OH$	$3.8 \times 10^{-12} \exp (200/T)$ $3.8 \times 10^{-12} \exp (200/T)$	1,11
(16)	$O({}^{3}P) \mid NO \xrightarrow{M} NO_{2}$	F(9.0(-32), 1.5, 3.0	. (01)		1.4 × 10 Cxp(-	(91)	$ROOH + OH \rightarrow 0.77RO_2 + 0.19MGLY + 0.04ALD2$	$3.8 \times 10^{-12} \exp(200/T)$	9,11
(17)	$O_3 + NO \longrightarrow NO_2$	$2.0 \times 10^{-12} \exp(-$	(69)	$ETH + O_{2} \rightarrow HCHO + 0.22HO_{2} + 0.12OH + 0.24CO$	$1.2 \times 10^{-14} \text{ even} (-$	1.01	+ 0.23OH - 0.12PAR	1 (,)	
(18)	$O_3 + NO_2 \longrightarrow NO_3$ $O_2 + OH \longrightarrow HO_2$	$1.2 \times 10^{-12} \exp(-1.6 \times 10^{$	(02)	$+ 0.24CO_2 + 0.52HCOOH$	ing a ro cup ((02)	ONIT & OF A NAB	1.6	
(20)	$O_3 + HO_2 \longrightarrow OH$	$1.1 \times 10^{-14} \exp(-$	(63)	$ETH + OH \longrightarrow XO_2 + 1.56HCHO + HO_2 + 0.22ALD2$	F(1.0(-28), 0.8, 8)	(93)	$ONIT + h\nu \longrightarrow NO_2 + 0.41XO_2 + 0.74AONE + 0.3ALD2$	J_{ONIT} exp (-540/1)	11,12
(21)	$OH + H_2 \longrightarrow HO_2 + H_2O$	$5.5 \times 10^{-12} \exp(-$	(64)	$OLET + O_3 \longrightarrow 0.57HCHO + 0.47ALD2 + 0.33OH$	$4.2 \times 10^{-10} \exp(-$		+ 0.1ETHP + 0.9HO ₂ - 1.98PAR		
(22)	$OH + NO \xrightarrow{m} HNO_2$	F(7.0(-31), 2.6, 3.6		$+ 0.03 \text{RO}_2 + 0.13 \text{C}_2 \text{O}_3 + 0.04 \text{MGLY} + 0.03 \text{CH}_3 \text{OH}$		(94)	$C_2O_3 + NO_2 \longrightarrow PAN$	F(9.7(-29), 5.6, 9.3(-12), 1.5)	1,13
(23)	$OH + NO_2 \longrightarrow HOO_3$ $OH + NO_2 \longrightarrow HOO_3 + NO_2$	F(2.5(-30), 4.4, 1.6) 2.2 $\times 10^{-11}$		$+ 0.06CH_4 + 0.01C_2H_6 + 0.31CO + 0.22CO_2$		(95)	$PAN \longrightarrow C_2O_3 + NO_2$	$k_{94}1.1 \times 10^{-5} \exp(-14000/T)$	1,13
(25)	$OH + HNO_2 \rightarrow NO_2$	$1.8 \times 10^{-11} \exp(-$	(07)	+ 0.22HCOOH + 0.09RCOOH - 1.06PAR	0.0 × 10-16 mm ((06)	Alkyl and Acyl Peroxy Radical Ch	emistry	
(26)	$OH + HNO_3 \xrightarrow{M} NO_3$	$k_{\alpha} + [M]k_b/(1 + [M]k_b)$	(65)	$+ 0.22HO_2 + 0.10CH_2O_2 + 0.05ETHP + 0.09RO_2$	0.5 × 10 exp(-	(90)	$CH_3O_2 + NO \longrightarrow HCHO + HO_2 + NO_2$ ETHP + NO $\longrightarrow ALD2 + HO_2 + NO_2$	$3.0 \times 10^{-12} \exp (280/T)$ 2.6 × 10 ⁻¹² exp (365/T)	1,11
		$k_{\alpha} = 7.2 \times 10^{-15} \text{ e}$		+ 0.11ANO ₂ $+ 0.19$ C ₂ O ₃ $+ 0.07$ MGLY		(98)	$RO_2 + NO \longrightarrow 0.16ONIT + 0.84NO_2 + 0.34XO_2$	4.0×10^{-12}	8,11
		$k_b = 1.3 \times 10^{-16}$ e: $k_c = 4.1 \times 10^{-16}$ e:		+ 0.04CH ₃ OH $+ 0.08$ CH ₄ $+ 0.01$ C ₂ H ₆			+ 0.62AONE + 0.25ALD2 + 0.08ETHP + 0.76HO ₂		
(27)	$OH + HNO_4 \longrightarrow NO_2$	$1.3 \times 10^{-12} \exp{(38)}$	(66)	\rightarrow 0.50(1) + 0.10(1) ₂ + 0.100(1.00) + 2.20 AR OLET + OH \rightarrow XO ₂ + HO ₂ + HCHO + ALD2 - PAR	$5.8 \times 10^{-12} \exp{(4)}$	1000	- 1.68PAR	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
(28)	$OH + HO_2 \longrightarrow H_2O + O_2$ $OH + H_2O_2 \longrightarrow HO_2$	$4.8 \times 10^{-11} \exp (25)$ 2.9 × 10 ⁻¹² exp (-	(67)	$OLEI + OH \longrightarrow XO_2 + IIO_2 + 0.23AONE + 1.77ALD2$	$2.9 \times 10^{-11} \exp{(2)}$	(99)	$C_2O_2 + NO \longrightarrow CH_2O_2 + NO_2 + CO_2$ ANO2 + NO $\longrightarrow NO_2 + C_2O_2 + HCHO_2$	$5.3 \times 10^{-13} \exp (360/T)$	1,10
(30)	$HO_2 + HO_2 \xrightarrow{M} H_2O_2$	$(k_{\mu} + [M]k_{\nu})$	6 mm 2	- 2.23PAR	2.1	(100)	$NAP + NO \longrightarrow 1.5NO_2 + 0.5HCHO + 0.5ALD2$	4.0×10^{-12}	8,11
(30)	$HO_2 + HO_2 \longrightarrow H_2O_2$	$k_d = 2.3 \times 10^{-13} \text{ e}$	(68)	$OLET + NO_3 \longrightarrow NAP$	$3.1 \times 10^{-12} \exp(-2.5 \times 10^{-12})$		+ 0.5ONIT $+ 0.5$ HO ₂ $- $ PAR		(0100)
	M.	$k_* = 1.7 \times 10^{-50}$ e:	(09)	$OLEI + NO_3 \longrightarrow NAP$ Aromatic Chemistry	2.0 × 10	(102)	$ISOPP + NO \rightarrow 0.09ONIT + 0.91NO_2 + 0.91HO_2$	4.0×10^{-12}	8,15
(31)	$HO_2 + HO_2 + H_2O \xrightarrow{m} H_2O_2$	$k_{30} \times 1.4 \times 10^{-21}$ (2) 2.5 × 10 ⁻¹² avr (2)	(70)	TOL + OH $\rightarrow 0.08XO_2 + 0.2HO_2 + 0.12CRES$	2.1 × 10 ¹² exp (3	(103)	+ 0.63 HCHO + 0.911 SOPRD + 0.18PAR ISOPN + NO \rightarrow NO ₅ + 0.8ALD2 + 0.8ONIT + 0.8HO ₅	4.0×10^{-12}	8 15
(32)	$HO_2 + NO \longrightarrow OH + MO_2$	F(1.8(-31) 3.2.4.7	()	+ 0.8TO ₂	1.7 × 10 ⁻¹¹ cmp (1	(100)	$+ 0.21SOPRD + 0.2NO_2 + 1.6PAR$		0,10
(34)	$HO_2 + NO_2 \longrightarrow HNO_2$ $HO_2 + NO_2 \longrightarrow HNO_2$	5.0×10^{-16}	(71)	$+ 1.1PAR + 0.45TO_2 + 0.05CRES$	1.7 × 10 exp(1	(104)	$ISOPO_2 + NO \longrightarrow NO_2 + HO_2 + 0.59CO + 0.55ALD2$	4.0×10^{-12}	8,15
(35)	$HNO_4 \xrightarrow{M} HO_2 + NO_2$	$k_{33} \times 4.76 \times 10^{26} \epsilon$	(72)	$TO_2 + NO \longrightarrow 0.95(NO_2 + OPEN + HO_2) + 0.05ONIT$	8.1×10^{-12}	(105)	+ 0.25HCHO + 0.34MGLY + 0.63AONE	4.0 × 10-12	8 1 2
(36)	$NO_3 + NO \rightarrow 2NO_2$	$1.5 \times 10^{-11} \exp(17)$	(73)	$CRES + OH \longrightarrow 0.4CRO + 0.6XO_2 + 0.6HO_2$	4.1×10^{-11}	(106)	$CH_{3}O_{2} + NO_{3} \longrightarrow HCHO + HO_{2} + NO_{2}$	1.1×10^{-12}	7.11
(37)	$NO_3 + NO_2 \longrightarrow NO + NO_2$	F(2.2(-30)) = 3.9 = 1.5	(74)	+ 0.30PEN CRES $+ NO_{2} \rightarrow CRO + HNO_{2}$	2 2 × 10 ⁻¹¹	(107)	$ETHP + NO_3 \longrightarrow ALD2 + HO_2 + NO_2$	2.5×10^{-12}	7,11
(39)	$NO_3 + NO_3 \longrightarrow 2NO_2 + O_2$	$8.5 \times 10^{-13} \exp(-$	(75)	$CRO + NO_2 \longrightarrow ONIT$	1.4×10^{-11}	(108)	$RO_2 + NO_3 \longrightarrow NO_2 + 0.4XO_2 + 0.74AONE + 0.3ALD_2$	2.5×10^{-12}	7,11
(40)	$NO_3 + HO_2 \longrightarrow .3HNO_3 + .7NO_2 + .7OH$	3.5×10^{-12}	(76)	$OPEN + OH \longrightarrow XO_2 + C_2O_3 + 2CO + 2HO_2 + HCHO$	3.0×10^{-11}	(100)	$+ 0.1ETHP + 0.9HO_2 - 1.98PAR$	4.0×10^{-12}	8.11
(41)	$N_2O_5 + H_2O \longrightarrow 2HNO_3$	2.0×10 b. $\times 3.7 \times 10^{20}$ cm	(77)	$OPEN + h\nu \longrightarrow C_2O_3 + CO + HO_2$	$9.04 \times J_{\rm HCHO_{2}}$	(110)	$ANO2 + NO_3 \rightarrow NO_2 + C_2O_3 + HCHO$	1.2×10^{-12}	8,11
(42)	$N_2 U_5 \longrightarrow N U_3 + N U_2$ $N U_1 = N U_1 + U_2 = 0^2 2 N U_2$	3.3 × 10 ⁻³⁹ evp (53	(18)	$+ 0.69CO + 0.08OH + 0.03XO_{2} + 0.76HO_{3} + 0.2MGLV$	5.4 × 10 · · · exp (-	(111)	$NAP + NO_3 \longrightarrow 1.5NO_2 + 0.5HCHO + 0.5ALD2$	4.0×10^{-12}	8,11
(44)	$CO + OH \xrightarrow{O_2} HO_2$	$1.5 \times 10^{-13}(1 + .6)$		Iconnon a Chamistra		(110)	+ 0.5ONIT $+ 0.5$ HO ₂ $- $ PAR	0.5 10-12	7 11
(45)	$SO_2 + OH \longrightarrow H_2SO_4 + HO_2$	F(3.0(-31), 3.3, 1.5)	(79)	$ISOP + OH \rightarrow ISOPP + 0.08XO2$	$2.55 \times 10^{-11} \exp(i$	(112)	$AO_2 + NO_3 \longrightarrow NO_2$ $CH_2O_2 + HO_3 \longrightarrow CH_2OOH$	2.5×10^{-13} ave (800/T)	1.11
					and it to the tart	(110)	OH OH	$7.5 \times 10^{-13} \exp(700/T)$	1,11
_		SU	LFUR	HEM	(5	$1.7 \times 10^{-13} \exp(1300/T)$	8,11
пп	U MATER	SU	LFATE) 🛩		(-)OH + O ₀)	$4.5 \times 10^{-13} \exp(1000/T)$	1,10
1111	VWATER	NUC	CLEAT	ION AND	()		#5	$1.2 \times 10^{-13} \exp(1300/T)$	8,11
	(SS, BC, UPTAKE	U2504 .CO	NDENS	SATION ALLI (DU, SS, BC,				$1.7 \times 10^{-13} \exp(1300/T)$	8 15
цц	OC, SO4)	H2504 00		Ψ OC, SO4)	F		0 9 1 03 1 + 2PAR	$1.7 \times 10^{-13} \exp(1300/T)$	8,15
	120	Anna and O	0	0° 0.5	03		O Q'LL II	$1.7 \times 10^{-13} \exp(1300/T)$	8,15
C	0 120	0			0			$1.7 \times 10^{-13} \exp(1300/T)$	8,11
	00			Q U	- ()		Parameterized Rermutation Read	tions	
				U U	($0.32HO_2 + 0.34CH_3OH$	$k_{i_{1}}^{(1)}, i = CH_3O_2$	11,16
	A OFA CALT	DIMETHY	SULF	DE 🛉 .	1	1150	$HO_2 + 0.2C_2H_6$	$k_{i}^{(i)}, i = \text{ETHP}$	11,16
	SEA-SALI	EMISSIONS	COLI I	,	2	'GAS	+hV, LD2 + 0.57AONE + 0.06ETHP	$k_i^{\gamma\gamma}, i = \mathrm{RO}_2$	11,16
	EMISSIONS	EMISSIONS	,	Ļ	-	1000		$k^{(1)} = C_2 O_2$	11.16
						(127)	ANO2 $\rightarrow 0.7(C_2O_2 + HCHO) + 0.15(MGLV + AONE)$	$k_{i}^{(1)}, i = ANO2$	11.16
						(128)	$NAP \rightarrow 0.5(NO_2 + HCHO + ALD2 + ONIT) - PAR$	$k_{i}^{(1)}, i = NAP$	11,16
						,,		86 7 m 1997 - 1997 - 1997	0.2420
				Barcelona					

Supercomputing Center

Centro Nacional de Supercomputación

Chemistry in the GPU: CUDA

Moderately stiff reactions:

Kyle E. Niemeyera,b,1, Chih-Jen Sungb, Accelerating moderately stiff chemical kinetics in reactive-flow simulations using GPUs, 2018

Complete chemical mechanism:

	Configuration		Median CP exec tim	U Median le lerated s) tir	acce- P l exec ne (s)	Perform	over CPU	
	Intel Xeon X5650 + M2 Intel Xeon E5-2680 v3	2070 + K80	4.50 1.47	2 6	0.999 0.283	4	.50× .21×	
	IBM POWER8 + P100		3.04	0	0.149	20	.40×	
Configuration		MPI Processes		CPU exec time (s)	Accelerated exec time (s)		Performance over CPU	
$2 \times 6-0$ $2 \times NV$	core Intel Xeon X5650 + VIDIA M2070	2 MPI 12 MP	processes I processes	5199 1388		2358 1368	1	2.27 × 1.01 ×
2 × 12 2 × NV	-core Intel E5-2680 v3 + VIDIA K80	4 MPI 24 MP	processes I processes	7362 1756		3384 1473	1	2.17 × 1.19 ×
2 × 10-core IBM POWER8 + 4 × NVIDIA P100		4 MPI 20 MP	processes I Processes	2294 814		918 437	1	2.50 × 1.86 ×

Michail Alvanos and Theodoros Christoudia, GPU-accelerated atmospheric chemical kinetics in the ECHAM/MESSy (EMAC) Earth system model, 2017

...and more

Our goal

• Challenges Addressed

- Isolated treatment of physical/chemical processes
- Huge heterogeneous codebase
- Efficient solving of complex physical/chemical systems
- How we do it
 - Integrated stand-alone chemistry solver
 - Standardized description of physical/chemical processes
 - Porting high-cost functions to GPUs
 - Simultaneous solving of multiple grid-cells

Tools: MONARCH & CAMP

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Motivation | Tools | Multi-cells | GPU Multi-cells Derivative | Conclusions MONARCH: Multiscale On-line Atmosphere Chemistry Model

Atmospheric chemistry - CAMP* module

*Chemistry Accross Multiple Phases

Atmospheric chemistry - CAMP* module Host model CAMP Solver model state photolysis chemistry core chemistry AP solver AP deposition transport integrated emissions chemical mechanism changes model state aerosol calculates rates microphysics provides aerosol **Aerosol Representation** properties Barcelona Supercomputing Center Centro Nacional de Supercomputación

*Chemistry Accross Multiple Phases

ODE Solver

 Purpose: Iteratively solves y'=f(t,y) using a Backward Differentiation Formula (CVODE) and the SuiteSparse KLU Linear Solver

• Needs: f(y) and $J = \partial f / \partial y$ (Derivative & Jacobian)

ODE Solver

 Purpose: Iteratively solves y'=f(t,y) using a Backward Differentiation Formula (CVODE) and the SuiteSparse KLU Linear Solver

• Needs: f(y) and $J = \partial f / \partial y$ (Derivative & Jacobian) ~30% ~20% ~10%

~70%

ODE Solver

 Purpose: Iteratively solves y'=f(t,y) using a Backward Differentiation Formula (CVODE) and the SuiteSparse KLU Linear Solver

• Needs: f(y) and $J = \partial f / \partial y$ (*Derivative* & Jacobian) ~30% ~20% ~10%

~70%

Multi-Cells

Barcelona Supercomputing Center Centro Nacional de Supercomputación

CAMP workflow in MONARCH

CAMP workflow in MONARCH

CAMP workflow in MONARCH

CAMP: Multi-cells

CAMP: Multi-cells

Test environment

- **Plaftorm:** CTE-POWER cluster, each node with:
 - 2 x IBM Power9 8335-GTH @ 2.4GHz
 - 4 x GPU NVIDIA V100 (Volta)
 - GCC version 6.4.0 and NVCC version 9.1

• **Configuration**: Basic

Mechanism	Reactions	Species	Cells*	GPUs	MPI processes
Basic (One-cell)	2	3	100 - 10,800	0	1
Basic (Multi-cell)	2	3	100 - 10,800	0	1

*10,800 cells is the common configuration per each MPI MONARCH node

CPU Multi-cells: Results

• Reduced ODE solver iterations

Number of Derivative calls from ODE solver One-cell Multi-cells Calls

Number of cells

CPU Multi-cells: Results

CAMP speedup for basic test with multi-cells

Number of cells

GPU Multi-cells Derivative

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Derivative: f(y)

• A reaction:

 $c_1y_1 + c_2y_2 + \cdots + c_my_m \leftrightarrow c_{m+1}y_{m+1} + c_{m+2}y_{m+2} + \cdots + c_ny_n,$

$$\left(\frac{dy_i}{dt}\right)_j = \begin{cases} -c_i r_j(\mathbf{y}, T, P, \dots) & \text{for } i \le m \\ c_i r_j(\mathbf{y}, T, P, \dots) & \text{for } m < i \le n \end{cases}$$

• Derivative:

$$f_i \equiv \frac{dy_i}{dt} = \sum_{j} \left(\frac{dy_i}{dt}\right)_j$$

c = *stoichiometric coefficient*

t = time

- r = rate
- j = reaction
- i = species

y_i = concentration of species i

- *m* = number of reactants
- *n* = *number* of *products*
- *p* = number of reactions
- w = number of species

CAMP: Multi-cells

$$f_i \equiv \frac{dy_{ik}}{dt} = \sum_j \left(\frac{dy_{ik}}{dt}\right)_j$$

 f_i = derivative

- *j* = reaction
- *i* = *species*
- k = cell
- y_{ik} = concentration of species i in cell k p = number of reactions
- p = number of colls
- q = number of cells

GPU Multi-cells

Centro Nacional de Supercomputación

Test environment

- **Plaftorm:** CTE-POWER cluster, each node with:
 - 2 x IBM Power9 8335-GTH @ 2.4GHz
 - 4 x GPU NVIDIA V100 (Volta)
 - GCC version 6.4.0 and NVCC version 9.1
- **Configuration**: Basic GPU

Mechanism	Reactions	Species	Cells*	GPUs	MPI processes
Basic (GPU)	2	3	100- 10,800	1	1
Basic (Multi-cell)	2	3	100 - 10,800	0	1

*10,800 cells is the common configuration per each MPI MONARCH node

GPU Multi-cells: Results

Number of cells

GPU Multi-cells: Data & Compute

Mechanism	Species	Cells	GPUs	Processes
Basic (GPU)	3	131072	1	1
Basic (MPI)	3	131072	0	40

Derivative on GPU and MPI

Conclusions

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Conclusions

- Multi-cell approach makes solving 12–14 times faster
 -> Simultaneously solving cells reduces solver iterations
- Porting solver functions to GPUs coupled with multi-cell treatment improves chemistry solving by 7–21×

-> Maximizing parallelization improves GPU functions

Data movement accounts for most multi-cell GPU computation time for large numbers of grid-cells

-> Search for alternatives (async & more computation)

Future work

 Porting all solver functions to GPUs will reduce data movement and improve efficiency (Ongoing work)

Load balancing GPU & CPU + asynchronous communication

• Evaluate GPU-based chemistry solving in MONARCH

Ongoing work: Linear solving

Adapting more ODE functions to GPU: Linear solving

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Thank you

christian.guzman@bsc.es

Appendix

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Derivative GPU

Parallelize reactions loop

Add data transfer

• Atomic operations

Initial CPU-based CAMP

Performance compared against reference methods

GPU Multi-cells: Memory & Compute

GPU-based derivative data movement and computation times

Number of cells

CAMP GPU vs KPP GPU

Barcelona

Center

CAMP GPU (including future work) vs KPP GPU

GPU Multi-cells: Block processing

CAMP time per different threads per block for basic test with 10,800 cells

Threads per block

CAMP time kernel division for basic test with 10,800 cells

CTE-POWER:

2 login nodes and 52 compute nodes, each of them:

- 2 x IBM Power9 8335-GTH @ 2.4GHz (3.0GHz on turbo, 20 cores and 4 threads/core, total 160 threads per node)
- 512GB of main memory distributed in 16 dimms x 32GB @ 2666MHz
- 2 x SSD 1.9TB as local storage
- 4 x GPU NVIDIA V100 (Volta) with 16GB HBM2.
- GPFS via one fiber link 10 GBit
- Compilers: GCC version 6.4.0 and NVCC version 9.1

Reaction data

