

EuroEXA Co-design, demonstration and evaluation using a rich set of exascale-class applications

Graham Riley & Mike Ashworth, Andrew Attwood, John Mawer Advanced Processor Technologies: apt.cs.manchester.ac.uk School of Computer Science, University of Manchester graham.riley@manchester.ac.uk

@ 2017–2018 EuroEXA and Consortia Member Rights Holders Project ID: 754337

- Build on foundation from previous projects
- Co-design and demonstrate 1 PF+ testbed in operational environment
- Apply design flexibility of UNIMEM architecture
- Aim to deliver available performance to full-scale production applications
- Achieve balance between compute resources and demands of applications
- Technology is ARM multicore + FPGA for acceleration of apps and comms

EUROEXA EuroEXA partnership

- September 2017 February 2021 (3.5 years)
- Budget €20 M

* * * * * EURO * * <u>EXA</u> *

EUROEXA System architecture and technology: Compute node

Technology from FORTH (QFDB board):

- 12 cm x 13 cm
- 4 ARM Processors and 4 FPGA Accelerators
- M.2 SSD
- 4 x SODIMMs + Onboard RAM
- Daughterboard style
- 160 Gb/s of I/O

EUROEXA System architecture and technology: Blades

Technology from Iceotope:

- 16 Node half depth 1u chassis
- 2 x 3.2 kW per u (back2back)
- Total Liquid Cooling technology
- 48 V DC distribution
- Hot water out, chiller-less operation

EUROEXA Technology – Data Centre

Technology from Iceotope:

- Shipping Container Optimised Cabinets (2 rows)
- 2MW per shipping container
- Enables 3D stacking to minimise distances

By Hubert.Knop - Own work, CC BY-SA 3.0, https:// commons.wikimedia.org/ w/index.php? curid=29173440

• Three testbeds to be deployed at STFC, Daresbury

Testbed 1	Testbed 2	Testbed 3
50 nodes of new technology for software development	500 nodes and new infrastructure technologies to test scaling	Test new node and processor technologies that will ultimately project to Exascale
Mid 2018	Late 2018/ early 2019	2020
23 Jan 2018		10 * EURO

EuroEXA: co-design, demonstration and evaluation using exascale-class apps

EUROEXA

- Covers three important application domains
 - Climate and weather (LFRic, NEMO, IFS)
 - Physics and energy (LBM, Alya, GADGET, AVU-GSR, FRTM, Astronomy image classification)
 - Life science and bioinformatics (NEST, Neuromarketing, InfOli, Quantum E, SMURFF)
- All domains will require exascale computing in near future
- ALYA, GADGET, NEMO and Quantum ESPRESSO part of PRACE UEABS

- Applications will target portable programming models / communication libraries
 - MPI, GPI (GAS programming Interface), Vivado HLS, OmpSs@FPGA, MaxJava, OpenCL (via SDSoC/SDAccel), OpenStream, and PSyClone
- Optimization for EuroEXA architecture done by programming environment
 - Building on the work in ExaNoDe project
 - Greater maturity, especially in FPGA support
 - Tuning and optimization through EuroEXA's full applications (cf ExaNoDe mini-applications)
 - Though work in Weather and Climate is focussed on kernels/mini-apps/dwarves currently
- Partners are currently porting to x86 clusters and Trenz boards / UltraScale+
- Will migrate to Testbed 1, 2 and 3 as available

EUROEXA Software stack... Building on ExaNoDe

- First testbed architecture will be shown to be capable of scaling to world-class peak performance in excess of 400 PFLOPS with an estimated system power of around 30 MW peak
- Co-design, demonstrate and evaluate using rich set of exascale-class applications
- Demonstrate / make progress on FPGA-enabled applications
- Specifically, for Weather and Climate, looking at LFRic, NEMO and IFS

