

# XIOS

# OUTPUT WHOLE CMIP6 DATA THROUGH THE NEW XIOS PARALLEL WORKFLOW FUNCTIONALITIES

M.H. Nguyen, R. Lacroix, O. Abramkina, Y., Wang, A. Caubel, <u>Y. Meurdesoif (IPSL/LSCE)</u>, S. Denvil (IPSL)

S. Senesi, D. Saint Martin (CNRM), M.P. Moine, S. Valcke (CERFACS)

5th ENES HPC Workshop on "HPC for high resolution climate and weather modelling"

May 17th - 18th, 2018, LECCE

Yann Meurdesoif – CEA/DRF/LSCE & IPSL



## THE IPSL EARTH SYSTEM MODEL



PAGE 2



- Typical run : model IPSLCM6-LR
  - Resolutions
    - Atmosphere : 144x143x79 ( 2 °, 79 vertical levels)
    - Ocean : ORCA1, L75 (1°, 75 vertical levels)
- Performances : 16 SYPD on 930 cores on Curie

# IPSL MODEL AND CMIP6 PROTOCOL



### CMIP6: 28 MIPs, 228 experiments, 2280 CMOR variables, 49 tables,...

40 000 years of simulation to perform

#### • Data Request (XML file)

- Specifying the variables which are needed for each experiments.
- High variability in the DRQ: from one experiment to the other, from one simulated year to the next one, from a
  modelling group to an other depending on the MIPs it is engaged in,...

#### **Computing and storage resources**

- 300 millions computing hours
  - 200 millions for development
  - 100 millions for production
- Production of 14 PB of data
- Distribution of 2 PB of data (ESGF)

| Version                           | Atm<br>resolution | Ocean<br>resolution | SYPD |
|-----------------------------------|-------------------|---------------------|------|
| IPSL-CM6-VLR<br>(atm chem, paleo) | 3°, L39           | 2°, L31             | 75   |
| IPSL-CM6-LR                       | 2°, L79           | 1°, L75             | 16   |
| IPSL-CM6-MR                       | 1°, L79           | 0.25° or 1°<br>L75  | ??   |
| IPSL-CM6-HR<br>(DYNAMICO)         | 0.6°, L79         | 0.25°, L75          | ??   |











|                 | For          | CMIP                   | <u>6 : we have a</u> dream…                                                                              | <br>ק ( |                 |
|-----------------|--------------|------------------------|----------------------------------------------------------------------------------------------------------|---------|-----------------|
| CMIP6 data worl | <b>(flow</b> | Outpur avoid tl cmoriz | t <b>Birectly data from the model to</b><br><b>&amp; Agrantatet of post-treatment and</b><br>tion(XIOS2) |         | Analysis        |
|                 |              |                        | CMIP6-publication-ready-data files                                                                       |         | ESGF/Web access |









Flexible data output description through an external XML file.

#### XIOS servers : asynchronous processes exclusively dedicated to output



- Overlap computation and I/O
- Rearrange data for better output efficiency
- Use parallel I/O for better efficiency
  - Aggregate I/O bandwidth of parallel file system
  - One piece files, no need to rebuild

#### Manage coupled models climate simulation

- Large numbers of cores (10 000+)
- One pool of I/O servers for all models







# CMIP6 WORKFLOW STRATEGY



PAGE 6

#### **CNRM and IPSL are sharing the same CMIP6 workflow based on XIOS-2**

DR2XML, developed by CNRM (S. Sénesi)

DE LA RECUERCHE À L'UNDUCTRI

- Translates CMIP6 Data Request to XIOS configuration files (Python script)
- IPSL implement the missing functionalities into XIOS-2
- Data Request → DR2XML → XIOS (XML) input Files → Data production





#### Ping file : variables Id from model <-> Data request Id (via DR2XML)

<field id="CMIP6\_ps" field\_ref="psol"/>

• CMIP6 workflow is applied only on "ping" fields

DE LA RECUERCHE À L'UNDUCTO

"Separation of concern" between standard output and CMIP6 output





# Cea

# **AUTOMATIC CF / CMOR CONFORMANCE**

- XIOS output fully CF 1.7 compliant
  - Axis & coordinates
  - Variables and associated metadata
  - Time axis management
- DR2XML generate automatically CMOR compliant XML input files for XIOS
  - CMOR specific global file attributes
  - CMOR specific associated metadata of variables
  - Renaming of axis & coordinates as required by Data Request
- Automatic time series management
  - One file by variable
  - Automatic generation of UUID (tracking\_id)
  - Automatic chunk splitting at a given frequency specifically to an output file
    - Constant size for chunk of file variable
    - Automatic file name suffix corresponding to the period of chunk
  - An output file can be reopen and appended by the next run

#### DR2XML generate ~90 000 XML code line by experiment







#### **HOW THAT IT LOOKS ?**

<file append="true" compression\_level="4" convention\_str="CF-1.7 CMIP-6.2" id="ps\_3hr\_gr" name="ps\_3hr\_IPSL-CM6A-LR\_historical\_r3i1p1f1\_gr\_%start\_date%-%end\_date <variable name="activity\_id" type="string"> CMIP </variable> <variable name="contact" type="string"> ipsl-cmip6@listes.ipsl.fr </variable> <variable name="data\_specs\_version" type="string"> 01.00.21 </variable> <variable name="data\_specs\_version" type="string"> 1.3 </variable> <variable name="description" type="string"> historical </variable></variable> <variable name="title" type="string"> CMIP6 historical </variable>
<variable name="title" type="string"> CMIP6 historical </variable>
<variable name="experiment" type="string"> all-forcing simulation of the recent past </variable>
<variable name="external\_variables" type="string"> areacella </variable>
<variable name="external\_variables" type="string"> areacella </variable>
</variable name="external\_variables" type="string"> areacella </variable>
</variable> variable name="speriment" type="string"> all-forcing simulation of the recent past variable name="cortend\_variables" type="string"> areacolla variable>
variable name="forcing\_index" type="string"> areavariable>
variable name="forcing\_index" type="string"> forcingvariable>
variable name="ind" trig"> forcing"> forcingvariable>
variable name="ind" type="string"> forcing"> forcingvariable>
variable name="ind" type="string"> forcingvariable>
variable name="ind" type="string"> forcing"> forcingvariable>
variable name="ind" type="string"> forci ocean: NEMO-OPA (eORCA1.3, tripolar primarily 1deg; 362 x 332 longitude/latitude; 75 levels; top grid cell 0-2 m) ocnBgchem: NEMO-PISCES sealce: NEMO-LIM3 </variable> <variable name="variant\_label" type="string"> r3i1p1f1 </variable>
<variable name="EXPID" type="string"> historical </variable>
<variable name="CMIP6\_CV\_version" type="string"> 00e1a4f623b35a33620b9828c66bd1c8 </variable> variable name="long\_name" type="string"> Surface Air Pressure </variable>
variable name="history" type="string"> none </variable>
variable name="units" type="string"> a </variable>
variable name="units" type="string"> area: mean time: point </variable> <variable name="cell\_measures" type="string"> area: areacella </variable> <variable name="interval\_operation" type="string"> 900 s </variable> </field> </file> | PAGE 9



# **XIOS-2 ONLINE DIAGNOSTICS**

#### CMIP6 output require a lot a diagnostics

- Unit rescaling
- Normalization by area or level height
- Time integration (averaging, minimum, maximum)
- Vertical interpolation in pressure levels
- Extraction on specific pressure levels
- Vertical or global summation
- Horizontal remapping
- Zonal mean

•

- Diurnal cycle, seasonal means
- Cfsites (points station extraction)
- Transects (flux across ocean straight)
- Many more complex diagnostics (ex : Eliassen Palm flux)

### Why do not taking advantage of thousands of computing cores allocated, to make the post-treatment in parallel, all along the simulation ?

Avoid to read, write, re-read, re-write, re-re-read, etc..., uselessly...

#### All these diagnostics can be computed online described using new XIOS-2 workflow functionalities

Diagnostics are described externally by XML files Ο









### XIOS-2 embed an internal parallel workflow/dataflow The XML files describe a parallel task graph

- Incoming data are representing data flux, assigned to a timestamp
  - Each flux can be connected to one or more filters
- Filters are connected to one or more input flux and generate a new flux on output
  - All Filters can be chained to achieve complex treatment
  - All filters are parallel and scalable



**FILTERS** 

#### Temporal filters : perform time integration

- Integrate input flux from a series of timestamp
- Output flux with a new timestamp
- Ex : instant, average, maximum, minimum, accumulate
- Soon : time interpolation filter

#### Arithmetic filters $\cap$

- Combine different flux from a same timestamp
- Perform arithmetic operations for each grid point
- ex: C = A + B/A \* B;  $D = e^{\uparrow} C * D/3$

<field id="A" /> <field id="B" /> <field id="C" > (A + B) / (A\*B) </field> <field id="D" > exp(-C\*this) / 3 </field>

- Can be chained with temporal filter to achieve more complex treatment
  - Ex : Compute the time standard deviation of a temperature field  $\sigma \approx \sqrt{\langle T \uparrow 2 \rangle} \langle T \rangle \uparrow 2$  every month

```
<field id="T" operation="average"/>
<field id="T2" operation="average"/> T*T </field>
<field id="sigma" freq op="1mo"/> sqrt(@T2-@T*@T) </field>
```

Ex: Compute the monthly averaging of the daily maximum of temperature

<field id="T" operation="maximum"/> <field id="daily Tmax" operation="average" freq op="1d"> @T </field> <field id="ave daily Tmax" freq op="1mo"> @daily Tmax </field>

**HPC WORKSHOP, Lecce** May 17<sup>th</sup> – 18<sup>th</sup>, 2018

## **3 families of computing filters**









<field id="temp" unit="K" operation="average"/>



# 2<sup>ND</sup> ORDER CONSERVATIVE REMAPPING ON THE SPHERE (ICOMEX : E.KRITSIKIS, T. DUBOS, Y. MEURDESOIF)

**SCE** 

- Parallel weight computation on "the fly"
- Parallel remapping, management of masked cells...
- Handle geodesic unstructured mesh (great circle) and rectilinear lon-lat or gaussian mesh (great and small circle)
- $_{\odot}~$  Ex : Remapping Gaussian reduced 60x30 -> regular lon-lat 2°







- (domain -> domain) : <zoom\_domain /> : extract area of interest
- (axis -> axis) :
- (axis->scalar):
- (domain->axis):
- (axis->axis) :
- (axis->axis):
- (domain->domain) :
- (domain) :
- (domain->scalar) :
- (domain->axis):
- (axis->scalar) :
- (scalar->axis) :
- (scalar->axis) :
- (domain->domain) :
- (domain->domain):
- (domain) :

- <zoom axis/> : extract part of an axis
- contract axis to acalar/> : axis alias axtra
- <extract\_axis\_to\_scalar/> : axis slice extraction
- <extract\_domain\_to\_axis/> : latitude or longitude extraction
- <inverse axis/> : invert axis
  - <interpolate\_axis> : axis interpolation, possibly on pressure level
  - : <interpolate\_domain/> : horizontal remapping <generate\_rectilinear\_domain/> : create a rectilinear mesh
  - <reduce\_domain\_to\_scalar/> : global domain reduction (sum, average, max, min,...)
    - <reduce\_domain\_to\_axis/> : partial domain reduction along i or j direction
  - <reduce\_axis\_to\_scalar/> : axis reduction (sum, average, max, min, ...)
  - <temporal\_splitting/> : diurnal cycle
    - <duplicate\_scalar\_to\_axis> : duplicate data along a new axis
  - : <reorder\_domain/> : reorder indexes of horizontal domain
  - <expand\_domain/> : expand local domain at first neighbor and transfer ghost cells
  - <compute\_connectivity/> : find the connectivity of an unstructured domain

#### And many others in future...





# CHAINING FILTERS...



#### Filters can be chained to compute more complex diagnostics

Zonal mean of monthly average of temperature at 850, 500 and 350 hPa
 Temp -> horizontal remapping on 1° regular mesh -> vertical interpolation on pressure levels
 -> reduction (average) over the longitude -> time averaging -> output

```
<grid id="src">
            <domain id="hlayer">
            <axis id="height">
          </arid>
          <grid id="grid interp">
            <domain id="reg lon lat" type="rectilinear" ni glo="360" nj glo="180"/>
              <generate rectilinear domain/>
              <interpolate domain order="2"/>
            </domain>
            <axis id="pressure level" n glo="3" value="(0,3)[850 500 350]" />
              <axis interpolate coordinates="pressure" />
            </axis>
          </grid>
          <grid id="grid zonal">
            <axis id="lat" n glo="180">
              <reduce domain to axis direction="jDir" operation="average"/>
            </axis>
            <axis id="pressure level" />
          </grid>
          <field id="Temp" grid ref="grid src">
          <field id="pressure" grid ref="grid src">
          <file id="output" output freq="1mo" />
            <field field ref="Temp" operation="average" grid_ref="grid_zonal" grid_path="grid_interp"/>
          </file>
HPC WORKSHOP, Lecce May 17<sup>th</sup> – 18<sup>th</sup>, 2018
```







# For some complex diagnostics need to be done into model, XIOS reentrance can be used (ex: barotropic stream function in Nemo ocean model)

- Ex : compute a diagnostic with the monthly average of temp and return it to be output
  - Send temperature to XIOS at every time step
  - After every month XIOS compute the average which can be retrieve from the model
  - Compute the diagnostic into the model side
  - Send the computed diagnostic to XIOS to be written

#### Fortran model side

```
CALL xios_send_field("temp",temp) ! send temperature value each time step
```

```
IF (xios_field_is_active("diag",at_current_timestep=true) THEN ! end of month ?
CALL xios_recv_field("temp_ave",temp_ave) ! get the monthly average of temp
CALL make_complex_diag(temp_ave,diag) ! compute the diagnostic
CALL xios_send_field("diag",diag) ! send the diagnostic to write
```

ENDIF

• XIOS side (XML)

```
<field id="temp" grid_ref="grid_model" operation="average"/> <!--temp sent every timestep-->
<field id="temp_ave" freq_op="1mo" grid_ref="grid_model" read_acess="true">@temp</field> <!--compute average-->
```

```
<file id="output" freq_op="lmo"/>
<field id="diag" grid_ref="grid_model" operation="instant"> <!--monthly output of diag-->
</file>
```







# **IPSL CMIP6 WORKFLOW PERFORMANCE**

#### CMIP6 is running now !!!

- Configuration : model IPSLCM6-LR
  - Atmosphere : 144x143x79 (2°, 79 vertical levels)
  - Ocean : ORCA1, L75 (1°, 75 vertical levels)
  - Performances : 16 SYPD on 930 cores on Curie (Bull, intel Sandy-Bridge)
- CMIP6 light I/O throughput (piControl, large part of the CMIP6 runs)
  - Config : 1 years (1850) piControl : 4 XIOS servers
  - No I/O : 4980 s
  - Only IO Standard (monthly output) : 5460s (+10%)
  - Only CMIP6 I/O : 5460 s (+10%, 0% compared to standard I/O)
  - CMIP6 + standard : 5820 s (+16%, +6% compared to only standard I/O)
- CMIP6 medium I/O throughput : 1 year historical 1850, CMIP6 I/O + standard
  - 927 files / variables, 158 Gb (compressed)
  - 12 XIOS servers
  - CMIP6 + standard : 6454 s (+18 % compared to only standard I/O)









- CMIP6 High I/O throughput : one year Full CMIP6 I/O output + standard I/O
  - 1173 files/variables, 1.5 Tb (compressed)

| config             | time    | % Vs standard I/O |
|--------------------|---------|-------------------|
| 4 XIOS -2 NODES    | 16440 s | +201 %            |
| 8 XIOS - 4 NODES   | 13020 s | +138 %            |
| 16 XIOS - 2 NODES  | 9300 s  | +70 %             |
| 16 XIOS - 4 NODES  | 9600 s  | +75 %             |
| 16 XIOS - 8 NODES  | 9360 s  | +71 %             |
| 24 XIOS - 2 NODES  | 8460 s  | +54 %             |
| 24 XIOS - 8 NODES  | 8040 s  | +47 %             |
| 24 XIOS - 12 NODES | 7860 s  | +44 %             |
| 32 XIOS - 2 NODES  | 8460 s  | +55 %             |

- Non negligible impact on computing time : +44 %
- Impact come from workflow cost, not I/O
- But for a low number of runs (<5%), so it remains acceptable





### IMPROVING PERFORMANCES : 2<sup>ND</sup> LEVEL OF SERVERS



- Parallel I/O with Netcdf / HDF5 does not scale well, especially for small mesh
- High cost to open and close a file in parallel mode
  - With 1000+ files the impact is strong
- $_{\odot}$  Unable to compress data on the "fly" using Netcdf / HDF5 parallel I/O
  - Limitation will be removed in future HDF5 1.10 versions

#### Add a second level of servers to write files in sequential mode

- First level will aggregate fields from client and redistribute its to second level
- Second level received field on global mesh and make sequential write
- o I/O parallelism is achieved by write sequential files concurrently







- o Internally, the first levels of server acts like a client pool for the second level of servers
  - Only the way of data redistribution across servers is different



- 12 XIOS servers level 1 : 23 000 s
- 12 XIOS servers : 6 level 1 + 6 levels 2 : 6454 s
- Activate compression (1 year historical)
  - Without compression : 327 Gb
  - With compression : **158 Gb** : storage divided by more of 2
- Easy to use : 2 parameters in XIOS namelist
  - use\_server2="true"
  - ratio\_server2="% of server 2" (default 50%)





# DE LA RECHERCHE À L'INDUSTRIE

## AN OTHER WAY OF IMPROVEMENT : MULTITHREADISM ?



#### Problem :

### 

- Currently : OpenMP models gather their data on master thread before calling XIOS
  - Big bottleneck : master thread do the job for all others waiting threads



• Future : all threads will participate to the XIOS call

• All threads will do their job part







**XIOS parallel protocol is complex :** 

We don't want to add a new level of parallelism in the code management

=> Adapt the actual implementation of parallelism to multithread

Idea : consider each OpenMP threads like a process that can communicate through the MPI library with other threads of other MPI process.







### MPI ENDPOINTS



### **Solution : MPI ENDPOINTS**

• Proposal under discussion on MPI-4 forum, waiting for adoption or not....

- Create a new communicator of size of total number of threads
- o Each thread receive a rank and can make transfer to other threads using standard MPI call







# Cea EP-LIB (Y. WANG, ESIWACE)



#### EP-LIB : XIOS team has developed a new MPI wrapper which implement MPI endpoints functionalities on top of standard MPI library

- Subset of MPI1 and MPI2 : P2P, collectives, one sided communication...
- Embedded into XIOS but can be used for other purpose
- MPI model can be used in MPI+OpenMP without major change
  - Privatize shared variable (static for C, SAVE for Fortran)
  - Fortran : !\$OMP THREADPRIVATE (var)
  - C/C++ : #pragma omp threadprivate(var)

### On going work....

- Implemented into XIOS (client part)
- Atmospheric model adapted (LMDZ)
- First test...







# **EP-LIB FIRST RESULTS**



#### Very preliminary results

• Test : LMDZ 144x142x79, heavy daily output (level 10)

|         |                                |       | job time (s) | XIOS time (s) | job speedup | xios speedup |
|---------|--------------------------------|-------|--------------|---------------|-------------|--------------|
| 10 days | 12MPIx8OMP                     | no EP | 699          | 75,10         | 1 15        | 3,73         |
|         |                                | EP    | 609          | 20,12         | 1,15        |              |
|         | 12MPIx4OMP <mark>n</mark><br>E | no EP | 1017         | 74,97         | 1 07        | 2,83         |
|         |                                | EP    | 949          | 26,51         | 1,07        |              |
|         | 12MPIx2OMP                     | no EP | 1756         | 74,98         | 1 03        | 1,69         |
|         |                                | EP    | 1702         | 44,37         | 1,05        |              |
|         | 12MPIx10MP                     | no EP | 3289         | 75,55         | 1 01        | 0,99         |
|         |                                | EP    | 3263         | 76,26         | 1,01        |              |
|         | 6MPIx8OMP EP                   | MPI   | 1337         | 143,51        | 1.40        | 5,12         |
|         |                                | EP    | 953          | 28,00         | 1,40        |              |
|         | 6MPIx4OMP                      | MPI   | 1978         | 143,62        | 1 16        | 3,31         |
|         |                                | EP    | 1702         | 43,37         | 1,10        |              |

- Expected speed-up: > 6 on 8 threads
- Need some improvement...









- Hard work to develop workflow functionalities that satisfy CMIP6 requirement
- Hard work to develop DR2XML which make the translation between Data Request and XIOS

#### But CMIP6 workflow is fully functional now !!

• Performances are quiet satisfying on the LR model

#### But a lot of room for improvement

- o Improve the transfer protocol and I/O for large number of servers
- o Improve the scalability of some workflow filters
- More generally improve the workflow performance

### Next step : HighRes MIP

50km ~ 25 km runs



