
POP CoE: Understanding
applications and how to prepare

for exascale

Jesus Labarta (BSC)
	

	

Lecce,	May	17th	2018	
	 	 	 	EU	H2020	Center	of	Excellence	(CoE)													5th	ENES	HPC	workshop					

• Promote	methodologies	and	best	pracIces	in	
•  Performance	analysis	
•  Parallel	programming	pracIces	

• By	means	of	services	
•  Performance	assessments	
•  Proof	of	concept	

2	

POP objective

•  195	Services	
•  Completed/reporIng:				113	
•  Codes	being	analyzed:				29	
• WaiIng	user	/	New:								36	
•  Cancelled:																									17	

• By	type	
•  Audits:																							137	
•  Plan:																											22	
•  Proof	of	concept:					19	

+	5	training	workshops	

• Reports	
•  5	-15	pages	

Activities (Dec 2017)

3	

• Understanding	applicaIon	behaviour	
•  Hierarchical	performance	model	
•  Performance	AnalyIcs	&	details	

•  Timelines	
•  What	if	
•  Clustering,	tracking,	folding,	…	

	
•  Towards	producIve	programming	large	scale	systems	

•  MPI	-	OpenMP	interoperability	
•  Task	based	overlap	communicaIon	and	computaIon	

•  ExploiIng	malleability	
•  Dynamic	load	balance	

4	

Methodologies and best practices

Hierarchical Performance
Model …

5	

Parallel	
Efficiency	

CommunicaIon	
Efficiency	

Load	Balance	

SerializaIon	
Efficiency	 Transfer	Efficiency	

Global	
Efficiency	

ComputaIon	
Efficiency	

IPC	scaling	
Efficiency	

InstrucIon	
scaling	

Efficiency	

Frequency	
Efficiency	

Efficiencies:		~	(0,1]	
MulIplicaIve	model	

Sharing	
effects	

SM		SynchronizaIon	

Memory	BW	

Cache		

Code	
replicaIon	

Dependencies	

OS	noise	

InstrucIon	mix	

NUMAness	

Hierarchical Performance
Model …

6	

 48 96 192 288 384

Parallel Efficiency 0.865 0.843 0.760 0.744 0.707

Load Balance 0.917 0.900 0.904 0.880 0.896

Serialization efficiency 0.975 0.989 0.972 0.963 0.956

Transfer Efficiency 0.967 0.948 0.866 0.878 0.826

Computation Efficiency 1.000 0.966 0.932 0.856 0.843

IPC scalability 1.000 0.974 0.955 0.896 0.891

Instruction scalability 1.000 0.993 0.976 0.950 0.943

Frequency scalability 1.000 0.999 1.000 1.006 1.003

Global efficiency 0.865 0.815 0.709 0.637 0.596

 2 4 8 16

Parallel Efficiency 0.983 0.944 0.898 0.848

Load Balance 0.987 0.969 0.910 0.918

Serialization efficiency 0.998 0.977 0.994 0.940

Transfer Efficiency 0.998 0.997 0.993 0.983

Computation Efficiency 1.000 0.959 0.868 0.695

IPC scalability 1.000 0.993 0.959 0.842

Instruction scalability 1.000 0.972 0.939 0.908

Frequency scalability 1.000 0.993 0.964 0.910

Global efficiency 0.983 0.905 0.780 0.589

Coloring 1.000 0.850 0.849 0.750 0.749 0.650 0.649 0.000

 32 48 64 96 128 256

Parallel Efficiency 0.917 0.906 0.887 0.847 0.864 0.790

Load Balance 0.946 0.925 0.934 0.858 0.871 0.813

Serialization efficiency 0.970 0.980 0.951 0.987 0.994 0.976

Transfer Efficiency 1.000 1.000 1.000 0.999 0.999 0.995

Computation Efficiency 1.000 1.025 1.026 1.036 1.012 0.956

IPC scalability 1.000 1.013 1.013 1.013 1.004 0.982

Instruction scalability 1.000 1.013 1.020 1.019 1.009 0.977

Frequency scalability

Global efficiency 0.917 0.928 0.911 0.877 0.874 0.755

 8 16 32 40

Parallel Efficiency 0.377 0.348 0.222 0.181

Load Balance 0.382 0.360 0.233 0.189

Serialization efficiency 0.981 0.967 0.957 0.959

Transfer Efficiency 1.000 1.000 0.999 0.999

Computation Efficiency 1.000 0.840 0.796 0.774

IPC scalability 1.000 0.944 0.894 0.870

Instruction scalability 1.000 1.000 1.000 0.999

Frequency scalability 1.000 0.890 0.890 0.890

Global efficiency 0.377 0.292 0.177 0.141

 2 4 8

Parallel Efficiency 0.985 0.914 0.931

Load Balance 0.985 0.914 0.939

Serialization efficiency 1.000 1.000 0.911

Transfer Efficiency 1.000 1.000 1.088

Computation Efficiency 1.000 0.814 0.633

IPC scalability 1.000 0.961 0.594

Instruction scalability 1.000 0.873 1.106

Frequency scalability 1.000 0.970 0.964

Global efficiency 0.985 0.744 0.590

… and detail

7	

What	if	MPI	had	no	overhead	and	transfer	was	instantaneous	?	 Detailed	communicaIon	paeern?	

Fundamental	underlying	causes?	

How	to	counteract?	

Tracking MPI+OMP strong
scaling

8	

48x1	

48x2	

48x4	

48x8	

48x18	

48x9	

Tracking MPI+OMP strong
scaling

9	

MPI – OpenMP interoperability
• Hybrid	Amdahl’s	law	

•  A	fairly	“bad	message”	for	programmers	

•  Significant	non	parallelized	parts	
•  pack/unpack	

•  Oken	too	fine	grain	
•  Significant	variability	

•  MPI	calls	
•  Too	serial		

•  Communicator	context	
•  MPI	order	semanIcs	

•  Instead	of	tags	
•  Hardwired	schedules	

for ()
 pack
 irecv
 isend
wait all sends
for ()
 test
 unpack

MAXW-DGTD	

NMMB	

•  Taskifying	MPI	calls	
•  Virtualize	“communicaIon	resource”	

•  OpportuniIes	
•  Overlap/out	of	order	execuIon	

•  ComputaIon	-	communicaIon	
•  CommunicaIon	-	communicaIon	
•  Phases	/	iteraIons	

•  Provide	laxity	for	communicaIons	
•  Tolerate	poorer	communicaIon	

•  Migrate/aggregate	load	balance	issues	
•  Flexibility	for	DLB	

11	

MPI – OpenMP interoperability

physics	 ns	

IFS	weather	code	kernel.	ECMWF	

V. Marjanovic et al, “Overlapping Communication and Computation by using a Hybrid MPI/SMPSs Approach” ICS 2010

K. Sala et al, "Improving the Interoperability between MPI and Task-Based Programming Models”. Submitted

• Dynamic	Load	Balance	&	Resource	management	
•  Intra/inter	process/applicaIon	

•  Library	(DLB)	
•  RunIme	intercepIon	(MPIP,	OMPT,	…)	
•  API	to	hint	resource	demands	
•  Core	reallocaIon	policy	
	

• Opportunity	to	fight	Amdalh’s	law	
•  ProducIve	/	Easy	!!!	

•  Nx1	
•  Hybridize	imbalanced	regions	

12	

Exploiting malleability

ECHAM	

“LeWI: A Runtime Balancing Algorithm for Nested Parallelism”. M.Garcia et al. ICPP09
“Hints to improve automatic load balancing with LeWI for hybrid applications” JPDC2014

• Dynamic	Load	Balance	&	Resource	management	
•  Intra/inter	process/applicaIon	

•  Library	(DLB)	
•  RunIme	intercepIon	(MPIP,	OMPT,	…)	
•  API	to	hint	resource	demands	
•  Core	reallocaIon	policy	
	

• Opportunity	to	fight	Amdalh’s	law	
•  ProducIve	/	Easy	!!!	

•  Nx1	
•  Hybridize	imbalanced	regions	

13	

Exploiting malleability

RelaIonal	Discovery	

“LeWI: A Runtime Balancing Algorithm for Nested Parallelism”. M.Garcia et al. ICPP09
“Hints to improve automatic load balancing with LeWI for hybrid applications” JPDC2014

• Dynamic	Load	Balance	&	Resource	management	
•  Intra/inter	process/applicaIon	

•  Library	(DLB)	
•  RunIme	intercepIon	(MPIP,	OMPT,	…)	
•  API	to	hint	resource	demands	
•  Core	reallocaIon	policy	
	

• Opportunity	to	fight	Amdalh’s	law	
•  ProducIve	/	Easy	!!!	

•  Nx1	
•  Hybridize	imbalanced	regions	

Exploiting malleability

“LeWI: A Runtime Balancing Algorithm for Nested Parallelism”. M.Garcia et al. ICPP09
“Hints to improve automatic load balancing with LeWI for hybrid applications” JPDC2014

RelaIonal	Discovery	

• MulIple	physics,	domains	
• Compute	&	I/O	

15	

Coupled codes

26.7MB trace
Eff: 0.43; LB: 0.52; Comm:0.81

16
00

 c
or

es

2.5 s
EC-EARTH

Atmosphere

Ocean

Exploiting malleability @ Coupled
codes

Fluid	
ParIcle	

• Dynamic	load	balance	
•  How	to	allocate	resources	?	Configure	the	runs	
•  Important	to	“maximize”	performance	…	
•  …	without	needing	to	care	about	detailed	configuraIon	

Fluid	dominated	 ParIcle	dominated	

•  The	real	parallel	programming	revoluIon		
•  …	is	in	the	mindset	of	programmers	

•  From	latency	to	throughput	oriented	!!!	
•  Think	global,	specify	local	

•  …	and	can	be	achieved	producIvely	
•  Incrementally	
•  On	a	standard	programming	model	(MPI+OpenMP)	

•  Age	before	beauty	
•  Behavior	(insight/models)	 	before 					syntax	
•  Detail	performance	analyIcs			 	before 					aggregated	profiles	
•  Work	instanIaIon	and		order 	before 					overhead	
•  Malleability																													 	before 					fieed	rigid	structure	
•  PossibiliIes																															 	before 					how	tos	
•  Elegance																																			 	before 					one	day	shine		

17	

Closing remarks

• Past	
•  Huge	effort,	high	appreciaIon		
•  Provided	useful	insight	to	a	large	set	of	users	
•  Using	“simple”	techniques	

• Plan	
•  ConInue	with	basic	service	
•  Ease	of	use	of	tools	
•  Extend	use	of	more	advanced	techniques	(clustering,	tracking,	folding,…)		
•  Emphasis	on	programming	best	pracIces		
•  Towards	larger	scales	

18	

POP

11/23/2016	

Contact:
 https://www.pop-

coe.eu
 mailto:pop@bsc.es

This	project	has	received	funding	from	the	European	Union‘s	Horizon	2020	research	and	innovaGon	programme	under	grant	agreement	No	676553.		

Performance	OpGmisaGon	and	ProducGvity		
A	Centre	of	Excellence	in	CompuIng	ApplicaIons	

