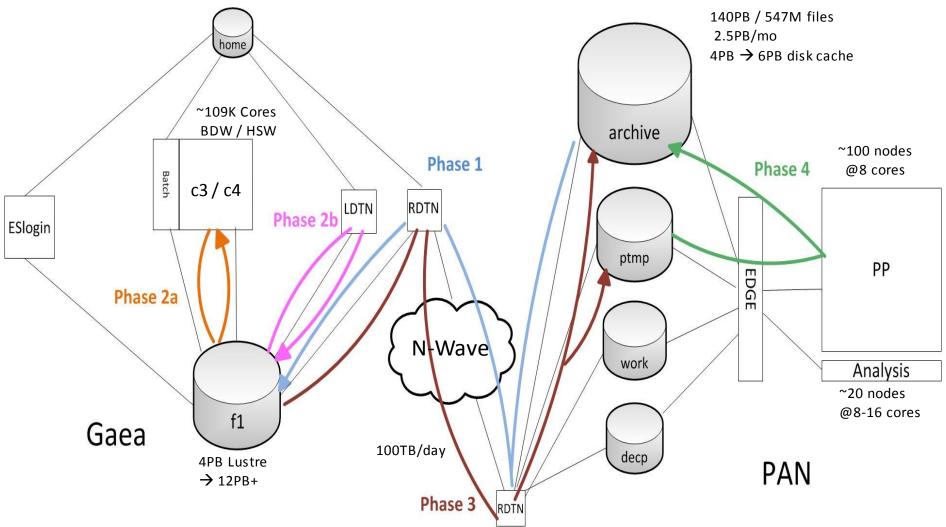
## Towards HPC System Throughput Optimization

Jeff Durachta, PhD Engineering Lead Modeling Systems Division Geophysical Fluid Dynamics Lab Princeton, NJ




### Overview

- The Setting: The GFDL Workflow
- Some Existing Tools
  - Just functional descriptions; no details
- Towards Throughput Optimization
  - A Workflow Database
- Conclusions
- Acknowledgments



### Workflow



Driven by FMS Runtime Environment automated workflow manager

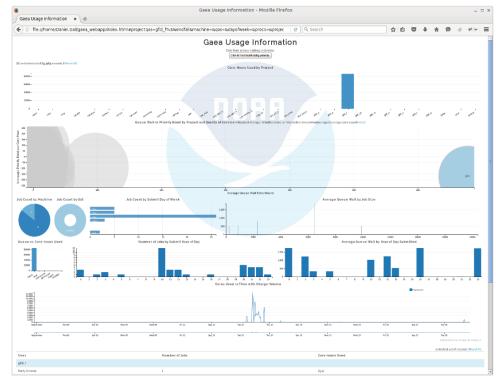


### Some Speeds and Feeds

- Gaea
  - ~109K BDW/HSW cores; ~98K cores devoted to GFDL
  - 4PB -> 12PB Lustre File System
  - CM / ESM: 4-8K cores; 7-14 simYrs/compDay; Use ~100%
  - ~50-70TB/day data egress to GFDL
- GFDL
  - DMF Archive: 140PB @2.5PB/mo; 547MFiles; 6PB disk
  - ~100 post-processing nodes @8 cores
  - ~20 analysis nodes @8-16 cores
  - ~10-20K jobs per day



### Workflow Data is Everywhere


- GFDL Curator / Model Dev DB Interface
  - (+) Detailed model provenance\*\*
  - (+) Web interface to post-processed results
  - (-) Requires detailed input\*\*
  - (-) Difficult to keep web interface relevant
- G(eneralized) CP (gcp)
  - (+) Centralized log of data transfers
  - (-) Only one aspect of workflow
  - (-) No systematic data mining

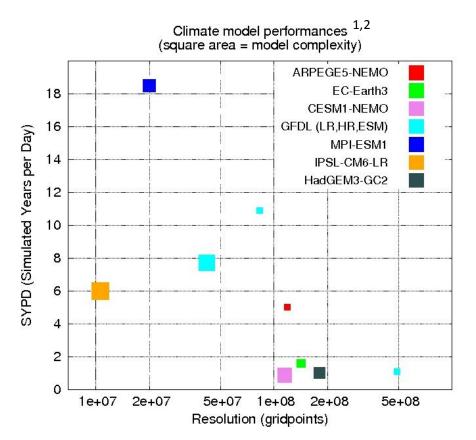


### GFDL Scheduler Usage Data Visualizer<sup>1</sup>

How did my job fare against other jobs?

- Vendor-provided accounting reporting was inaccurate
- Aggregate data from many sources; validate scheduler and accounting correctness
- Find source of truth for scheduler components
  - and whether "truth" is a variable thing

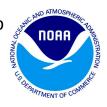



<sup>1</sup>Dan Gall, Engility Corporation



### CPMIP

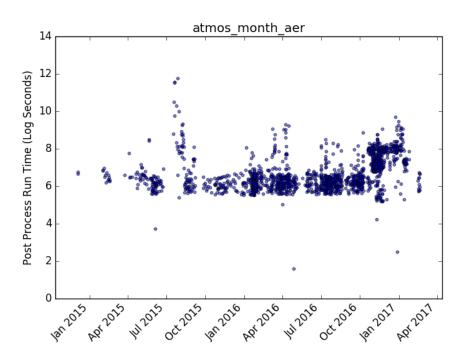
How much resource does my model use relative to its resolution and complexity<sup>3</sup>?


- "Measurements of real computational performance of Earth system models in CMIP6"
  - geosci-modeldev.net/10/19/2017/
  - (+) Evolving CV for
    CM/ESM Comp Perf &
    Resource Utilization
  - (-) Only summary aspect of the performance picture



<sup>1</sup> Figure courtesy of V. Balaji

<sup>2</sup> GFDL data from Niki Zadeh, Engility Corp


<sup>3</sup> Complexity ≈ Num prognostic vars



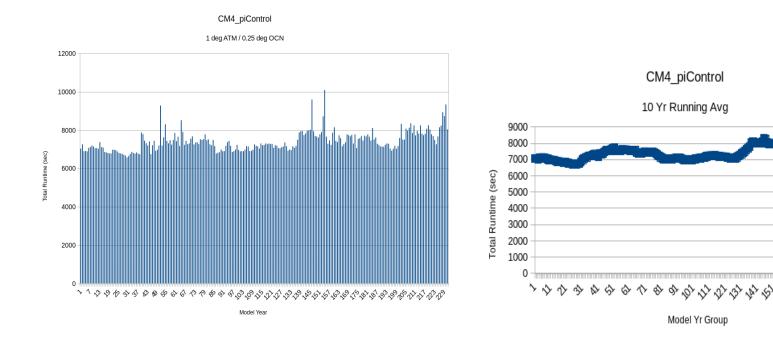
### GFDL Post-Process Job Log Scraping<sup>1</sup>

How long until I can see my results?

- Proof of concept
  - Examined 800GB of job logs
  - Goal: Build per sim diag component model of thruput
  - Given complexity of the system, descriptive stats alone insufficient
    - Learn to deal with data gaps
  - Begin to understand and address scaling issues
  - Develop some initial workload models



<sup>1</sup> Benjamin Mayer (ORNL) Joseph Kennedy (ORNL) Katherine Evans (ORNL) Jeff Durachta (GFDL) Published as ORNL/TM-2018/540




### Progress in Earth System Science

- Many aspects require a constant flux of graphs, tables and charts
- Research requires many job runs related by time sequence and/or parameter variations
- Simulation environments have been undergoing enormous (catastrophic?) growth in complexity
- Complex system issues can rob workflows of throughput performance
- Finding root causes for throughput loss are typically time consuming and difficult



### CM4\_piControl Total Runtime per Sim Yr A picture is worth....





かか

ゆん

\$

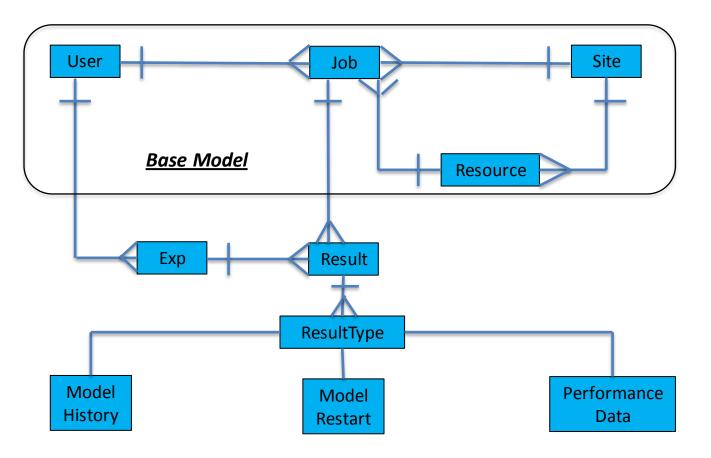
6

### Workflow Database

Build on the work of others

- GFDL Scheduler Data Visualizer
  - Extract base data set from scheduler
  - Ensure that <u>all</u> jobs are represented
- Employ a layered DB model
  - Jobs willing to provide more identification about themselves can record a vast array of related data
    - Curator: an "Experiment"
    - CPMIP: resources used by a class of Experiments
    - JLS<sup>1</sup>: throughput performance
      - Experiment end-to-end
      - Across entire system platform




### **Potential Advanced Capabilities**

- Enable new levels system debugging
  - Enhance workflow toolset logging capabilities
  - Cross correlate with other system logs
  - Answer: Who? Why? What?
- Enable predictive analysis
  - Trend analysis to influence preventive maintenance
  - Data driven decisions on system upgrades



### Some Possible Entities & Relationships

No Attempt at Normalization



"Experiment" Extension



### Conclusions

- We must transform "islands of data capture" into a comprehensive workflow data gathering and analysis infrastructure
- Design requirements
  - Light weight; non-intrusive; comprehensive
  - Modular, encapsulated; extensible
  - Deployed in stages; build complexity from simplicity
- Goal: Understand and optimize scientific data production throughput
  - See through the ever increasing volume and complexity



## Workflow Data is Everywhere

# Enable exascale science; Not run just exascale models



### Acknowledgements

The GFDL Workflow Team: V Balaji<sup>1</sup>, Chris Blanton<sup>2</sup>, J Durachta<sup>3</sup>, Colleen McHugh<sup>2</sup>, Sergey Nikonov<sup>1</sup>, Aparna Radhakrishnan<sup>2</sup>, Seth Underwood<sup>3</sup>, Chan Wilson<sup>2</sup>, Hans Vahlenkamp<sup>4</sup>

#### Technical Systems Workflow Support: Dan Gall<sup>2</sup> (Scheduler Data Visualizer)

General Workflow Data Capture Philip Mucci<sup>5</sup>

<sup>1</sup> Princeton University
 <sup>2</sup> Engility Corporation
 <sup>3</sup> US Federal
 <sup>4</sup> University Corporation for Atmospheric Research (UCAR)
 <sup>5</sup> Minimal Metrics, LLC

