

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 671627

Funded by the European Union

Future and Emerging Technologies-High Performance Computing (FET-HPC)

CECMWF

MeteoSwiss

Required: Billion-way parallelism

Funded by the European Union

wire

[Dongarra et al. 2015]

Hardware

- hybrid computing model seems to be here to stay;
- memory systems will become ever more complicated;
- hardware faults require fast adaptation strategies.

ESCAPE key objectives

- 1. Define fundamental **algorithm building blocks** (*"Weather & Climate Dwarfs"*) to co-design, advance, benchmark and efficiently run the next generation of NWP and climate models on energy-efficient, heterogeneous HPC architectures.
- 2. Diagnose and classify Weather & Climate Dwarfs on different HPC architectures
- 3. Combine frontier research on **algorithm development** and extreme-scale, high-performance computing applications with **novel hardware technology**, to create a flexible and sustainable weather and climate prediction system.
- 4. Foster the **future design of Earth-system models** and commercialisation of weather-dependent innovative products and services in Europe through enabling open-source technology.
- 5. Pairing world-leading NWP with innovative HPC solutions.

What is a dwarf?

Funded by the European Union

Weather & Climate Dwarfs encapsulate basic algorithmic motifs by breaking down numerical weather prediction legacy codes into key functional components - in analogy to the Berkeley Dwarfs.

Weather & Climate Dwarfs are distinctly motivated by the requirement to maximise computing performance, energy consumption, as well as timeand-cost-to-solution.

Why focus on Dwarfs?

Funded by the European Union

Loughborough

Relevance of Dwarfs

Funded by the European Union

% of the entire runtime

Dwarfs and Programming

Funded by the European Union

Dwarf	prototype implemented	docu- mented	based on Atlas	MPI	Open MP	Open ACC	DSL	Optalysys	
D - spectral transform - SH				V					 first version running planned empty cells: not part of ESCAPE
D - spectral transform - biFFT									
D - advection - MPDATA									
D - advection - semi-Lagrangian									
D - elliptic solver - GCR							•		
D - elliptic solver - multigridPrecon									
P - cloud microphysics - CloudSC									
P - radiation scheme - ACRANEB2									
I - LAITRI (3d interpol. algorithm)									

∰ -∛∰]] Dmi

Confederation to be Confederation to be Confederations for Confederations for

Swiss Confederation Federal Department of Nor Federal Office of Meleonie MeteoSwiss

Loughborough 11

Hybrid Computing – single GPU

Funded by the European Union

Loughborough

- exposing parallelism in loops for OpenACC mapping
- Kernel optimization by memory mapping
- exploiting CUDA BLAS features
- minimizing data allocation and movement

Bull

PSNC

• (calling C /CUDA from PGI Fortran)

Optalysys

Hybrid Computing – multiple GPU

Funded by the European Union

NVIDIA NGX-2 with NVSwitch

ESCAPE Software collaboration platform

Funded by the European Union

From ESCAPE to ESCAPE-2

Funded by the European Union

ESCAPE-2: HPCW

Funded by the European Union

HPCW benchmark tier	Specification	Options for novel developments to be included
Models	ICON ocean FV NEMO ocean FD IFS atmosphere FV IFS atmosphere DG IFS atmosphere ST ICON atmosphere FV	Mathematics (finite-difference, time stepping), DSL Mathematics (time stepping), DSL Mathematics (discretization, time stepping, fault tolerance), DSL Mathematics (discretization, time stepping, fault tolerance), DSL N/A (only as reference) Mathematics (neural networks), DSL
Systems	Kronos workload simulator	Simulating the above

