

CLAW Provides High-Level Abstractions for Weather and Climate Models

ENES Workshop April 7, 2016

Jon Rood

Who is Involved in CLAW?

- People involved
 - Valentin Clément (C2SM), Sylvaine Ferrachat (ETH Zurich),
 Oliver Fuhrer (MeteoSwiss), Xavier Lapillonne (MeteoSwiss),
 Jon Rood (C2SM), Will Sawyer (CSCS)

What is CLAW?

- Scientists must conduct a computational symphony of interdependent physical, virtual, and theoretical instruments of optimization
 - Machine configurations, software environments, programming languages, compilers, compiler flags, model configurations, domain-based optimizations, algorithmic optimizations, source code optimizations, etc.
- ► CLAW is an effort to increase the performance portability and maintainability of climate and weather codes (that are written in Fortran)

When is CLAW Happening?

- CLAW is happening right now through 2016 as a small project to develop a proof-of-concept
- Hopefully future funding possibilities will expand its functionality and abstraction

Why Develop CLAW?

Code Example Using #IFDEF

Original Subroutine

```
!$acc parallel loop gang
DO k=1,ntrac
 IF (trlist%ti(k)%nsedi==0) CYCLE
 imod=trlist%ti(k)%mode
 slinnfac=sigma(imod)**(2._dp*sigmaln(imod))
 IF (trlist%ti(k)%nphase==AEROSOLNUMBER) THEN
   !$acc parallel loop gang vector collapse(2)
   DO j=1,klev
     DO i=1.kproma
      zmd(i,j)=MIN(rwet(imod)%ptr(i,j,krow)*2, dp,50,E-6 dp)
   END DO
 END IF
 !$acc parallel loop gang vector collapse(2)
 DO i=1.klev
   DO i=1,kproma
     zsediflux(i,j)=0._dp
     IF (zmd(i,i)>0, dp) THEN
       zxtp1=pxtm1(i,j,k)+pxtte(i,j,k)*time_step_len
       zvsedi=(2._dp/9._dp*&
         (densaer(imod)%ptr(i,j,krow)-zrho(i,j)) &
         *grav/zvis(i,j)*(zmd(i,j)/2._dp)**2._dp) &
         *(slinnfac+1,246 dp*2, dp*zlair(i,i) &
        /zmd(i,i)*exp((0.5 dp*sigmaln(imod)**2, dp)))
       zsedtend=zxtp1*zvsedi/zdz(i,j)
       pxtte(i,j,k)=pxtte(i,j,k)-zsedtend
       zsediflux(i,i)=zsedtend*zdpg(i,i)
     END IF
   END DO
 END DO
 !$acc parallel loop gang vector collapse(2)
 DO i=2.klev
   DO i=1,kproma
     pxtte(i,j,k)=pxtte(i,j,k)+(zsediflux(i,j-1)/zdpg(i,j))
   END DO
 END DO
END DO
!$acc end parallel loop
```

Refactored Subroutine

```
!$acc parallel loop gang vector collapse(2)
DO k=1,ntrac
 DO i=1,kproma
   DO i=1.klev
     IF (trlist%ti(k)%nsedi==0) CYCLE
     imod=trlist%ti(k)%mode
     slinnfac=sigma(imod)**(2. dp*sigmaln(imod))
     IF (trlist%ti(k)%nphase==AEROSOLNUMBER) THEN
       zmd=MIN(rwet(imod)%ptr(i,i,krow)*2. dp.50.E-6 dp)
     END IF
     zsediflux(j)=0._dp
     IF (zmd>0, dp) THEN
       zxtp1=pxtm1(i,j,k)+pxtte(i,j,k)*time_step_len
       zvsedi=(2._dp/9._dp*&
         (densaer(imod)%ptr(i,j,krow)-zrho(i,j)) &
         *grav/zvis(i,j)*(zmd/2._dp)**2._dp) &
        *(slinnfac+1.246_dp*2._dp*zlair(i,j) &
         /zmd*exp((0.5 dp*sigmaln(imod)**2, dp)))
       zsedtend=zxtp1*zvsedi/zdz(i,j)
       pxtte(i,j,k)=pxtte(i,j,k)-zsedtend
       zsediflux(i)=zsedtend*zdpg(i,i)
     END IF
     IF (j>1) THEN
       pxtte(i,i,k)=pxtte(i,i,k)+(zsediflux(i-1)/zdpg(i,i))
     END IF
   END DO
 END DO
                           from this example
END DO
!$acc end parallel loop
```

Code Example With CLAW

Original Subroutine w/ CLAW

```
!$claw acc parallel loop gang vector collapse(2)
DO k=1,ntrac
  !$claw begin loop-hoist(j,i) loop-interchange &
 !$claw reshape(zmd(0),zsediflux(1,j))
   DO j=1,klev
     DO i=1.kproma
       zmd(i,j)=MIN(rwet(imod)%ptr(i,j,krow)*2._dp,50.E-6_dp)
   END DO
 DO i=1.klev
   DO i=1,kproma
     zsediflux(i,j)=0._dp
     IF (zmd(i,j)>0._dp) THEN
        *grav/zvis(i,j)*(zmd(i,j)/2._dp)**2._dp) &
         /zmd(i,i)*exp((0.5 dp*sigmaln(imod)**2, dp)))
      zsediflux(i,j)=zsedtend*zdpg(i,j)
   END DO
 END DO
 DO j=2,klev
   DO i=1,kproma
    pxtte(i,j,k)=pxtte(i,j,k)+(zsediflux(i,j-1)/zdpg(i,j))
 END DO
 !$claw end
END DO
!$claw acc end parallel loop
```

Generated Subroutine

```
!$acc parallel loop gang vector collapse(2)
DO k=1,ntrac
 DO i=1,kproma
   DO i=1.klev
     IF (trlist%ti(k)%nsedi==0) CYCLE
       zmd=MIN(rwet(imod)%ptr(i,i,krow)*2. dp.50.E-6 dp)
     zsediflux(j)=0._dp
     IF (zmd>0._dp) THEN
         *grav/zvis(i,j)*(zmd/2._dp)**2._dp) &
         /zmd*exp((0.5 dp*sigmaln(imod)**2. dp)))
       zsediflux(j)=zsedtend*zdpg(i,j)
     IF (i>1) THEN
       pxtte(i,j,k)=pxtte(i,j,k)+(zsediflux(j-1)/zdpg(i,j))
     END IF
   END DO
 END DO
END DO
!$acc end parallel loop
```

- Loops hoisted
- 2. Loop interchange
- 3. Arrays reshaped

How is CLAW Implemented?

- CLAW is developed by utilizing the OMNI source-to-source compiler from the Riken Institute
- Currently code exists in original CPU optimal state with CLAW directives for GPU-centric transformations
- OMNI compiler front-end generates an intermediate code representation with abstract syntax tree where transformations are performed in JAVA and the back-end generates transformed Fortran code

Where is CLAW Available?

https://github.com/C2SM-RCM

CLAW Progression

- CLAW development is iterating from the 'bottom-up'
- Have begun developing most useful transformations for GPUs already seen in COSMO
- Investigating and verifying use of these transformations and searching for more in ECHAM/HAMMOZ and ICON, as well as COSMO
- Currently can perform loop reordering, loop fusion, array demotion to scalar, code removal, and vector notation to loops
- Working on loop hoisting/lowering and reshaping arrays

CLAW Progression

- ► After building up sufficient transformation capabilities, higher level abstractions should become possible and are desired
- ▶ Will want to expand beyond only CPU ↔ GPU transformations into more architectures
- Interested in possible connection to other high level abstraction projects (DSLs, DSAs)
- Could CLAW ultimately become a transformation knowledgebase?

Questions?