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Cartesian dynamical core, physical processes

For regional weather/climate simulations
Nishizawa et al (2015), Sato et al. (2015)

lcosahedral dynamical core
For global climate simulations
Tomita et al. (2001,2002), Tomita and Satoh (2004)
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Concept
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Reproducibility

Scientific products should be able to be replicated
for verification and reliability.

—[ Openness }

e SCALE is available to anyone as an open source software.

*[ Sharing know-how }

e Predecessors’ undocumented knowledges have often
been lost.

e We try to publish knowledge of our experiences, e.g.,
parameter tuning, limiter...
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Easy Comparison

Comparison is a key in evaluation of the reliability
of the meteorological numerical simulations.

—[ Uncertainty of meteorological simulation }
 not a first-principle simulation
e many empirical rules / hypotheses
e tones of tunable switches

—[ Difficulty in validation of simulations }

e limitation of observations (coverage, resolution, quantity)
e paleo/future climate, or other planets
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. ( . )
Inter-model comparisons Intra-model comparison

total performance

{individual schemes

\. J

physical processes, e.g.,
* cloud microphysics: one/two moment bulk, spectral bin, super-droplet
dynamical cores, e.g.,

e discretization schemes
e order of accuracy of difference scheme
* implicit and explicit temporal integration schemes

combination of the schemes
tunable parameters
precision of floating point

Differences are relatively easy to be understood




Comparison between cloud-microphysical schemes

RICO experiment (van Zanten et al. 2011)
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We can conclude that

these differences are originated from the cloud-microphysical schemes.
1-moment: The faster drop is due to saturation adjustment and quick
autoconversion.

Sato et al. 2015: Impacts of cloud microphysics on trade wind cumulus: which cloud
microphysics processes contribute to the diversity in a large eddy simulation? PEPS, 2:23.




LES-scale simulations

Several added values are expected
in high-resolution large-eddy simulations.

_[

Smaller uncertainty, On more physical principles J

e cumulus parameterization -> cloud microphysics
e RANS -> LES

%

Better representation of extremes

e finer topography / surface conditions
e |ess spatial averaging
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Issues

*[ Validity of parameterization

e assumption of parameterizations
e scale-dependent parameters

*[ Computational efficiency

e efficient use of computational resources
e scaling at massive parallel computer

—[ Data explosion }

e better data handling in pre/post processes

2016/04/06 4th ENES HPC Workshop @ Toulouse
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Energy spectrum

Validation of large grid aspect ratio (dx/dz) in LES

Unstable PBL turbulence experiment

SGS model with consideration
of aspect ratio
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conventional SGS model: spurious energy pile due to small mixing

length

Nishizawa et al. 2015: Influence of grid aspect ratio on planetary boundary layer

turbulence in large-eddy simulations, GMD, 8, 3393-3419.




Challenge to meso-scale LES

Huge domain with high resolution LES

e 300 km x 30 km domain with Ax=50 m, 275 layers
e 1 billion grids

e 16 hintegration (dt=0.01 sec)
e 138 h with 221,184 cores @K computer

e total 120TB output



Prescribed

Simulated
distribution

Transition from closed to open cell of the stratocumulus

distribution
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o
Broaden clouds reach
other clouds originated
from neighbor cell

Bzt Clouds disappear before
they reach neighbor cloud

Sato et al. 2015: Horizontal distance of each cumulus and cloud broadening distance

determine

cloud cover, SOLA, 11, 75-79.




Other planets

Highest resolution on Martian PBL experiment

e 19.8 km? domain with Ax=5 m, 3,300 layers
e 50 billion grids

1 hintegration (dt=0.006 sec)
e 200 h with 57,600 cores @K computer

e total 60TB output



Statistics of Martian dust devils

[km]

-10 -5 0O 3 10 -2 -1 Q 1 2
[m/s] [1/s]

) 107

108

number density [1/km2] &

108

9

number density [1/km?] =
<

(=)
|
[

100m

5 107

2 5 102

radius [m]

N F

_J ‘ \L

100m

107
Pressure drop

P

number density [1,/km?]

number density [1/km?]

b)

109

100

i

Q
r‘\)

1072

g — ipom ]

| ?gm |

L —y _2 i
J_ P Tm

4 tIiE

[ S ]

5 100 2 ) 101 2

maximum velocity [m,//s]

— 100m

al To.

on
o
3

gsa
355

102 2 5 105 2 5 104
Circulation [m2/s]

Nishizawa et al.: Martian dust devil statistics from high-resolution large-eddy simulations,

GRL, in revision.




Local Ensemble Transform Kalman Filter (Hunt et al. 2007)

Pinpoint (100-m resol.) forecast of
severe local weather by
updating 30-min forecast every 30 sec!

collaborate w/ AICS data assimilation Team, JMA, NICT, and Osaka Univ.

Mivoshi et al. : “Big data assimilation” Revolutionizing severe weather prediction, BAMS,
accepted.




+ 30-sec. assimilation cycle system
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SCALE Computational performance

performance @ K computer

e above 10% of peak performance (dynamical core)

e 5~8% for full simulation (including 1/0)
e about 100% weak scaling up to full system (663,552 cores)
e good strong scaling
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A Cost-effective Online Nesting Procedure

Conventional CONeP Common domain1 domain2 domain 3
00090 -0 oagcoﬁgTe @ grid space 27 km 9 km 3 km
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Performance Experiment on K computer for 1350s time integration

CONeP

elapsed time 209s 16.8s

20% faster!

elapsed time

61.3s

449s

27% faster!

Yoshida et al.: CONeP: A cost-effective online nesting procedure for regional atmospheric

models, Parallel Computing, submitted.
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Challenge! (explicit expression of cloud )

Our research community (NICAM research community)’ approach:
Resolve the cloud system & related process over the globe

NICAM development : ~2000
still development is continuing!

Conceptual development philosophy

* Explicit resolving the cloud itself

e Use of Icosahedral grid

» To get a quasi-homogeneous grid for
computational efficiency

* Nonhydrostatic DC

e To resolve cloud scale (deep convection, shallow
cloud etc.)

e Sophistication of cloud expression:

e To avoid the ambiguity of cumulus
parameterization and understand the cloud
dynamics




Grand Challenge on the K computer

Sub-km global simulation!

e Ax=870m, 94 layers

* 63 billion grids
e 48 h integration (dt=2 sec)

e 220 h with 163,840 cores @K computer
e total 320TB output

s 200-day-postprocesson-Xeon-cluster

= analysis on the K (163,840 cores)



Horizontal: A0.87 km: vertical
egration time 24h
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Convergence of convections with resolution

e Global composite of deep convection (vertical velocity)
e Ax<2km: convection is represented at multiple grids
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Miyamoto et al. 2013: Deep moist atmospheric convection in a subkilometer global
simulation, GRL, 40, 4922-4926.




Efficiency of NICAM on K Computer

Performance efficiency [ (R"I'I'(gzs/%rgs) ]
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NICAM870m/L96 animation

NICAM 8/0 m - 96 levels

Real Case Simulation: 25 - 26, Aug., 2012

SPIRE field-3: Study of extended-range predictability using GCSRAM
RIKEN / AICS: Computational Climate Science Research Team
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Direction of our research in AICS in next 5 years

eInfrastructure:
e Extension of basic library SCALE :

e Massive parallel analysis routines for acceleration of
scientific output, social outcome

* Not only acceleration of simulation itself but also acceleration of
analysis phase

e Easy programing and high performance computing:
* DSL(Domain Specific Language)? e.g. stencil DSL
* w/ the Japanese next flagship computer project



Direction of our research in AICS in next 5 years

e Science:
* BIG DATA assimilation:

* Now, developing....
e NICAM + LETKF (with DA research team & post K priority subject)
* Many satellite data is available.
e One goal : Reanalysis data by cloud resolving model
e SCALE+LETKF( with DA research team)
e PA data provides tremendous information in time and space.

e We are tackling to each cumulus with 30min lead time

* Reginal Climate assessment! : downscale to city level

e Disaster prevention and mitigation, adaptation

e Multi-model ensemble (SCALE can do it!) drastically reduce the uncertainties for the
future climate assessment in the regional model

* Model bias reduction by data assimilation
e e.g. Determination of unknown parameters

* Planetary science
e Generalization of earth knowledge

* Theoretical issue
* Moist LES theory
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Dynamics

Governing equations:
3-dimensional fully compressible
Grid system::

Arakawa-C type

Temporal integration:
HEVE, HEVI, HIVI

Temporal difference:

3 steps Runge-Kutta scheme
Spatial difference:

4t order central difference
Topography:
Terrain-following

Positive definitive:

FCT scheme

Other

Offline/Online nesting system

LETKE assimilation system

Brief description of SCALE

Physical schemes

Cloud microphysics: U
Kessler (Kessler, 1969)
1-moment bulk (Tomita et al., 2008) SCOLE
2-moment bulk (Seiki and Nakajima, 2014) Smmmm—
1-moment bin (Suzuki et al., 2010)
super droplet method (Shima et al., 2009, experimental)
Turbulence:
Smagorinsky SGS (Brown et al. 1994, Scotti et al. 1993)
MYNN level 2.5 (Nakanishi and Niino 2004)
Cumulus parameterization:
Kain-Fritsch (in preparation)
Radiation:
MSTRN-X (Sekiguchi and Nakajima, 2008)
Aerosol microphysics:
3-moment bulk (Kajino et al., 2013, experimental)
Surface flux:
Louis-type (Uno et al. 1995)
Beljaars-type (Beljaars and Holtslag 1994, Wilson 2001)
Land:
Slab model with a bucket model
Ocean:
Slab ocean model
Urban:

Single-layer urban canopy model (Kusaka et al., 2001)




Convergence of 1. number of convection 2distance of neighboring convection

‘ Miyamoto et al.2013 Geophys. Res. Lett. \

(a) number of convection

(b) distance between convection
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e # of conv.: increase by factor of 4

 Conv. distance between convection: Convection features (structure, number,
4 grids => unphysical? :
distance
Ax < 1.7 km: change between A3.5 km <> Al1.7 km
- Axshould be 2.0~3.0 km to resolve
convection in global models
Resolution of 2km is tipping point!

e H#of conv.: decrease in increasing rate
e Conv. distance:

>5 grids => close to the nature
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Validation of higher resolution simulation

Density current test case

51.2 km x 6.4 km (2-D domain)

Same setting as Straka et al. (1993) but no physical diffusion.
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The bigger spiral structure still remain
: . animation
due to absent of the smaller scale instability.

It does not mixed well.

Higher resolution: not always better than lower one

without appropriate treatment /parameterization.
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