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ARPEGE & IFS

ARPEGE: Action de Recherche Petite Échèlle Grande Échèlle, 
operationally used at Météo-France

IFS: Integrated Forecasting system, operationally used at ECMWF

• global spectral model, 
• Gaussian grid for grid-point calculations,
• terrain-following  pressure hybrid vertical coordinates,
• option for a horizontally variable mesh: change of horizontal 

representation is defined by a change of pole.
• contains different models: 3D primitive-equation model, 3D non-hydrostatic model,

2D shallow-water model), 
• different assimilation schemes: optimal interpolation, 3D variational, 4D variational,
• different physics packages: weather at different scales, climate.

Both systems are regularly synchronized!
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IFS cycle 41r2 (since March 2016)

← 2x 9-km global high-resolution 10-day forecasts per day

(4x ARPEGE 7.5 km over France, 37 km opposite, 3-4.5 days)

51x 18-km global  lower-resolution 15-day forecasts per day… →
… extended to 46 days twice per week at 36 km

← 51x 64-km global low resolution 7-month forecast per month
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2 MW    6 MW + research + other services = 60 MW?

What is the challenge?
Global forecast experiments with ECMWF’s IFS at 2.5 km (today’s resolution is 9 km) – still far away 

from targeted 1 km resolution

Real runs on 

available

Cray XC-30

Extrapolation to 

bigger computers

Operational target:

10-day forecast in 1 hour

= 240 forecast days / day

Operational target requires 

~270,000 cores
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[Michalakes et al. 2015: AVEC-Report: NGGPS level-1 benchmarks and software evaluation]

AVEC forecast model intercomparison: 3 km

Scalability: Efficiency:
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Phase 1 (Ivybridge) – 2014-2016 Phase 2 (Broadwell) – 2016-2020

CPU 24 cores (2 x 12 core) @ 2.7GHz 36 cores (2 x 18 core) @ 2.1 GHz

Memory/Node 64 Gb (1866 MHz DDR3) 128Gb (2400 MHz DDR4)

Memory/Core 2.6 Gb 3.5Gb (+35% cf Phase 1)

Parallel Nodes (per cluster) 3,400 3,513 (+3% cf Phase 1)

Total Cores (per cluster) 84,096 130,212 (+55% cf Phase 1)

Tf sustained (both clusters) 200 320 (+60% cf Phase 1)

ECMWF HPC
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Ensemble

Single

Simple compute projection (only resolution)

2016 2025

≈ M€ electricity/year

Power limit

[Bauer et al. 2015]
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Strategic target:

Global 5km, seamless 
analysis-forecast 

ensemble 
in 2025

EDA:

H resolution o/l TCo639 TCo1279

H resolution i/l TL191 TCo191

V resolution L137

Coupling orca025l75

Ensemble size M25 M50

Window length 2x12h 4x6h

Efficiency gains

Nodes: 1600 2560 5120 5632 5632 28160

Factor: 1 1.6 2.0 1.1 1.0 5.0

Acc. factor: 1 1.6 3.2 3.5 3.5 17.6

ENS/legA:

H resolution TCo639 TCo1279

V resolution L91 L137

Coupling orca100l42 orca025l75

Forecast range d10 d15

Ensemble size M51

Reforecast 
ensemble size M11 M15

Efficiency gains

Nodes: 1530 1683 2525 3787 4355 21774

Factor: 1 1.1 1.5 1.5 1.2 5.0

Acc. factor: 1 1.1 1.7 2.5 2.8 14.2

Four-year plan: Projected HPC cost
2016 2017 2018 2019 2020

2016 2017 2018 2019 2020
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IFS/ARPEGE: Old assets and new features

Retain:
• Semi-implicit, semi-Lagrangian (SISL) solution procedure of the hydrostatic primitive equations
• Fast spectral transforms
• Effective and load-balanced combinations of MPI and OpenMP
• A fully-compressible, non-hydrostatic, deep-atmosphere option (from ALADIN to IFS/ARPEGE)
• Spectral transform efficiency at large hydrostatic scales

Add:
• Flexibility in data structure design and numerical methods
• Small-scale simulation capability and nearest-neighbour connectivity
• Local mass conservation of tracers and moist species
• Steep slope orography capabilities
• Increased resolution (by re-thinking the spectral wavenumber truncation to grid point number ratio 

(Wedi 2014; by introducing the cubic-octahedral grid (TCo1279) at ECMWF (Wedi et al. 2015)).
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FFT (fast Fourier transform)

using
NF ≥ 2N+1
points (linear grid)
(3N+1 if quadratic grid)
“fast” algorithm available …

Legendre transform

by Gaussian quadrature
using NL ≥ (2N+1)/2
“Gaussian” latitudes (linear grid)
((3N+1)/2 if quadratic grid)
“fast” algorithm desirable …

Triangular truncation
(isotropic)

Spherical harmonics

associated Legendre polynomials

Fourier functions

Triangular truncation:

m

n
N

m = -N m = N

The future of the spectral model

Horizontal discretization of a variable, e.g. temperature:

[Courtesy Nils Wedi]
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Once per time step:

Communication vs computation cost:

→ Spectral transforms ~ 30% of total model cost (physics + waves 40%, SL-scheme 10% etc.) at globally 9 km resolution

[Courtesy George Mozdzynski]

The future of the spectral model
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Use of fast Legendre transform:
Nils P. Wedi, Mats Hamrud, and George Mozdzynski, 2013: A Fast 
Spherical Harmonics Transform for Global NWP and Climate 
Models. Mon. Wea. Rev., 141, 3450–3461. 
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Transforms on GPUs:

[Courtesy George Mozdzynski]

The future of the spectral model
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[Courtesy George Mozdzynski]

Before    After
msec./transform

Overlap of communication and computation:
Mozdzynski et al. 2015: A PGAS implementation of the ECMWF IFS. Int. J. 
High-Perf. Comp. App.

The future of the spectral model
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→ local connectivity

ATLAS: A flexible data structure

[Courtesy Willem Deconinck]

At 9 km: 6,599,680 grid points x 137 levels x 10 variables = 9 billion points
→ Equal area (MPI) parallel decomposition (1600 tasks)



October 29, 2014PETER BAUER 2016

→ Compressible equations provide the most 
efficient solution as well as flexibility on the 
solution procedure in time

Finite-volume module (FVM)

O640 - Held-Suarez with 
real orography:

surface pressure after 50 
days of simulation

[Courtesy Piotr Smolarkiewicz, Christian Kühnlein]
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NOAA FEWS Convection off

Convection on, scaled mass-flux 

The future of the parameterized convection

[Courtesy Peter Bechtold]
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Issues with ESM initialization, and trading off model complexity and potential increase in predictive skill

ESM coupling

[Courtesy Kristian Mogensen]
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[Courtesy Anna Agusti-Panareda]
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• Extract predictive skill from a complete description of the Earth-System

• Optimize time-to-solution, energy-to-solution and information density

• Provide computational efficiency to enhance forecast reliability 

• Apply adaptive numerical techniques and tools for forecast reliability 

but also for application resilience in a computing environment that itself 

may be subject to (partial) failure

Key challenges

[Wedi et al. 2015]
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IFS/ARPEGE roadmap

ESCAPE

ERC

PantaRhei

[Wedi et al. 2015]

ESiWACE


