ARPEGE & IFS

ARPEGE: Action de Recherche Petite Échèlle Grande Échèlle, operationally used at Météo-France

- **IFS**: Integrated Forecasting system, operationally used at ECMWF
- global spectral model,
- Gaussian grid for grid-point calculations,
- terrain-following pressure hybrid vertical coordinates,
- option for a horizontally variable mesh: change of horizontal representation is defined by a change of pole.
- contains different models: 3D primitive-equation model, 3D non-hydrostatic model, 2D shallow-water model),
- different assimilation schemes: optimal interpolation, 3D variational, 4D variational,
- different physics packages: weather at different scales, climate.

Both systems are regularly synchronized!

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

IFS cycle 41r2 (since March 2016)

← 2x 9-km global high-resolution 10-day forecasts per day
(4x ARPEGE 7.5 km over France, 37 km opposite, 3-4.5 days)

51x 18-km global lower-resolution 15-day forecasts per day... \rightarrow ... extended to 46 days twice per week at 36 km

² \leftarrow 51x 64-km global low resolution 7-month forecast per month

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

What is the challenge?

AVEC forecast model intercomparison: 3 km

Scalability:

Efficiency:

[Michalakes et al. 2015: AVEC-Report: NGGPS level-1 benchmarks and software evaluation]

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

		ECMWF HPC	1000	Growth in computing performance	200,000,000		
			20,000,0 0,001 0,0001 0,0001 0,0001 1978 1982 1986 1990 1994 1998 2002 2006 2010 2000 2				
ć		Phase 1 (Ivybridge) – 2014-2016	Phase 2				
	CPU	24 cores (2 x 12 core) @ 2.7GHz	36 cores	(2 x 18 core) @ 2.1 GHz			
	Memory/Node	64 Gb (1866 MHz DDR3)	128Gb	(2400 MHz DDR4)			
	Memory/Core	2.6 Gb	3.5Gb	(+35% cf Phase 1)			
	Parallel Nodes (per cluster)	3,400	3,513	(+3% cf Phase 1)			
	Total Cores (per cluster)	84,096	130,212	(+55% cf Phase 1)			
	Tf sustained (both clusters)	200	320	(+60% cf Phase 1)			

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Simple compute projection (only resolution)

Four-year plan: Projected HPC cost

		20	016	2017	2018	2019	2020			Strategic	target:	
	H resolution o/l	TCo639					TCo127	⁷⁹	Glo	bal 5km	, seamless	
	H resolution i/l	TL191	TCo191							analysis-forecast		
	V resolution	L137							<u> </u>	onsomblo		
	Coupling				orca0251	75				CIISCI		
	Ensemble size	M25		M50						in 20)25	
LDA.	Window length	2x12h	4x6h							Δ		
	Efficiency gains									\neg		
	Nodes:	1600	2560	5120	5632	5632	28160)				
	Factor:	1	1.6	2.0	1.1	1.0	5.0					
	Acc. factor:	1	1.6	3.2	3.5	3.5	17.6				N	
						2	016	2017	2018	2019	2020	
				H resolutio	n	TCo639					TCo1279	
				V resolutio	n	L91			L137			
				Coupling		orca100l42	orca025175					
				Forecast ra	nge	d10		d15				

M51

M11

1530

1

1683

1.1

1.1

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

ENS/legA:

Ensemble size

Efficiency gains

Reforecast ensemble size

Nodes:

Factor:

Acc. factor:

PETER BAUER 2016

2525

1.5

1.7

3787

1.5

2.5

M15

4355

1.2

2.8

21774

5.0

14.2

7

IFS/ARPEGE: Old assets and new features

Retain:

- Semi-implicit, semi-Lagrangian (SISL) solution procedure of the hydrostatic primitive equations
- Fast spectral transforms
- Effective and load-balanced combinations of MPI and OpenMP
- A fully-compressible, non-hydrostatic, deep-atmosphere option (from ALADIN to IFS/ARPEGE)
- Spectral transform efficiency at large hydrostatic scales

Add:

- Flexibility in data structure design and numerical methods
- Small-scale simulation capability and nearest-neighbour connectivity
- Local mass conservation of tracers and moist species
- Steep slope orography capabilities
- Increased resolution (by re-thinking the spectral wavenumber truncation to grid point number ratio (Wedi 2014; by introducing the cubic-octahedral grid (TCo1279) at ECMWF (Wedi et al. 2015)).

Horizontal discretization of a variable, e.g. temperature:

[Courtesy Nils Wedi]

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Communication vs computation cost:

→ Spectral transforms ~ 30% of total model cost (physics + waves 40%, SL-scheme 10% etc.) at globally 9 km resolution

CECMWF

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

PETER BAUER 2016

[Courtesy George Mozdzynski]

Use of fast Legendre transform:

Nils P. Wedi, Mats Hamrud, and George Mozdzynski, 2013: A Fast Spherical Harmonics Transform for Global NWP and Climate Models. Mon. Wea. Rev., 141, 3450–3461.

Transforms on GPUs:

[Courtesy George Mozdzynski]

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

PETER BAUER 2016

[Courtesy George Mozdzynski]

ATLAS: A flexible data structure

At 9 km: 6,599,680 grid points x 137 levels x 10 variables = 9 billion points \rightarrow Equal area (MPI) parallel decomposition (1600 tasks)

[Courtesy Willem Deconinck]

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Finite-volume module (FVM)

[Courtesy Piotr Smolarkiewicz, Christian Kühnlein]

The future of the parameterized convection

15% 10% 5% Convection on, scaled mass-flux

[Courtesy Peter Bechtold]

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

ESM coupling

[Courtesy Kristian Mogensen]

[Courtesy Anna Agusti-Panareda]

Issues with ESM initialization, and trading off model complexity and potential increase in predictive skill

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Key challenges

- Extract *predictive skill* from a complete description of the *Earth-System*
- Optimize *time-to-solution*, *energy-to-solution* and *information density*
- Provide *computational efficiency to enhance forecast reliability*
- Apply *adaptive numerical techniques and tools* for forecast reliability but also for application resilience in a computing environment that itself may be subject to (partial) failure

PETER BAUER 2016

[Wedi et al. 2015]

