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Climate modeling, a computational profile

Intrinsic variability at all timescales from minutes to millennia;
distinguishing natural from forced variability is a key challenge.
coupled multi-scale multi-physics modeling;
physics components have predictable data dependencies
associated with grids;
Adding processes and components improves scientific
understanding;
New physics and higher process fidelity at higher resolution;
Ensemble methods to sample uncertainty (ICEs, PPEs, MMEs...)
algorithms generally possess weak scalability.

In sum, climate modeling requires long-term integrations of
weakly-scaling I/O and memory-bound models of enormous
complexity.

V. Balaji (balaji@princeton.edu) GFDL Models 6 April 2016 4 / 36



Earth System Model Architecture

Earth System Model

? ?? ?

Atmosphere Land Ice Ocean

? ?
AtmDyn AtmPhy

? ? ?
Rad H2O PBL

? ?
OcnBio OcnClr

? ?
LandBio LandH2O

Complexity, resolution, UQ: components can have their own grids,
timesteps, algorithms, multiple concurrent instances.
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The hardware jungle

Upcoming hardware roadmap looks daunting! GPUs, MICs, DSPs,
and many other TLAs. . .

Intel straight line: IvyBridge/SandyBridge, Haswell/Broadwell:
“traditional” systems with threading and vectors.
Intel knight’s move: Knights Corner, Knights Landing: MICs,
thread/vector again, wider in thread space.
Hosted dual-socket systems with GPUs: SIMD co-processors.
BG/Q: CPU only with hardware threads, thread and vector
instructions. No followon planned.
ARM-based systems coming. (e.g with DSPs).
FPGAs? some inroads in finance.
Specialized processors: Anton for molecular dynamics, GRAPE
for astrophysics.
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The software zoo

Exascale using nanosecond clocks implies billion-way concurrency!
It is unlikely that we will program codes with 106− 109 MPI ranks: it will
be MPI+X. Solve for X . . .

CUDA and CUDA-Fortran: proprietary for NVIDIA GPUs. Invasive
and pervasive.
OpenCL: proposed standard, not much penetration.
ACC from Portland Group, now a new standard OpenACC.
Potential OpenMP/OpenACC merging...?
PGAS languages: Co-Array Fortran, UPC, a host of proprietary
languages.
Code generation:

Domain-specific languages (DSLs): e.g STELLA, Psy.
Source-to-source translators.
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GFDL between jungle and zoo

GFDL is taking a conservative approach:

it looks like it will be a mix of MPI, threads, and vectors.
Developing a three-level abstraction for parallelism: components,
domains, blocks. Kernels work on blocks and must have
vectorizing inner loops.
Recommendation: sit tight, make sure MPI+OpenMP works well,
write vector-friendly loops, reduce memory footprint, offload I/O.
Other concerns:

Irreproducible computation
Tools for analyzing performance.
Debugging at scale.

Recent experience on Titan, Stampede and Mira reaffirm this
approach.
This talk will focus on coarse-grained parallelism at the component
level.
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Earth System Model Architecture

Earth System Model

? ?? ?

Atmosphere Land Ice Ocean

? ?
AtmDyn AtmPhy

? ? ?
Rad H2O PBL

? ?
OcnBio OcnClr

? ?
LandBio LandH2O

Extending component parallelism to O(10) requires a different physical
architecture!
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Serial coupling

Uses a forward-backward timestep for coupling.

At+1 = At + f (At ,Ot ) (1)
Ot+1 = Ot + f (At+1,Ot ) (2)
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Concurrent coupling

This uses a forward-only timestep for coupling. While formally this is
unconditionally unstable, the system is strongly damped∗. Answers
vary with respect to serial coupling, as the ocean is now forced by
atmospheric state from ∆t ago.

At+1 = At + f (At ,Ot ) (3)
Ot+1 = Ot + f (At ,Ot ) (4)
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Massively concurrent coupling
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Components such as radiation, PBL, ocean biogeochemistry, each
could run with its own grid, timestep, decomposition, even hardware.
Coupler mediates state exchange.
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The radiation component

The atmospheric radiation component computes radiative transfer of
incoming shortwave solar fluxes and outgoing longwave radiation as a
function of all radiatively active species in the atmosphere (greenhouse
gases, aerosols, particulates, clouds, ...).

The physics of radiative transfer is relatively well-known, but a full
Mie-scattering solution is computationally out of reach.
Approximate methods (sampling the “line-by-line” calculation into
“bands”) have been in use for decades, and “standard” packages
like RRTM are available.
They are still very expensive: typically ∆trad > ∆tphy (in the GFDL
models typically 9X). The model is sensitive to this ratio.
Other methods: stochastic sampling of bands (Pincus and
Stevens 2013), neural nets (Krasnopolsky et al 2005)

Challenge: can we exploit “cheap flops” to set ∆trad = ∆tphy?
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Traditional coupling sequence

Radiation timestep much longer than physics timestep.
(Figure courtesy Rusty Benson, NOAA/GFDL).
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Proposed coupling sequence

Radiation executes on physics timestep from lagged state.
(Figure courtesy Rusty Benson, NOAA/GFDL).
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Proposed coupling sequence using pelists

Requires MPI communication between physics and radiation.
(Figure courtesy Rusty Benson, NOAA/GFDL).
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Proposed coupling sequence: hybrid approach

Physics and radiation share memory.
(Figure courtesy Rusty Benson, NOAA/GFDL).
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Results from climate run

20 year AMIP/SST climate runs have completed on Gaea (Cray XE6).
Control: 9.25 sypd

∆trad = 9∆tphy
864 MPI-ranks / 2 OpenMP threads

Serial Radiation: 5.28 sypd
∆trad = ∆tphy
864 MPI-ranks / 2 OpenMP threads

Concurrent Radiation: 5.90 sypd
∆trad = ∆tphy
432 MPI-ranks / 4 OpenMP threads (2 atmos + 2 radiation)
Can get back to 9 sypd at about ∼2700 cores (roughly 1.6X).

Comparison of Concurrent Radiation to Control
climate is similar
TOA balance is off by ∼ 4W/m2, mostly in the short wave, but
easily retuned when ready to deploy

Results presented at AMS (Benson et al 2015). Article in the works for
GMD special issue on coupling.
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Lee vortices off Hawaii under two-way nesting

Figure courtesy Lucas Harris and S-J Lin, NOAA/GFDL.
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Concurrent two-way nesting

Typical nesting protocols force serialization between fine and coarse
grid timestepping, since the C∗ are estimated by interpolating between
Cn and Cn+1.

F n F n+ 1
3 F n+ 2

3 F n+1

Cn C∗n+ 1
3 C∗n+ 2

3 Cn+1

We enable concurrency by instead estimating the C∗ by extrapolation
from Cn−1 and Cn, with an overhead of less than 10%. (See Harris
and Lin 2012 for details.)
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Ice-ocean boundary
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The NGGPS Effort

NGGPS: Next-Generation Global Prediction System
HIWPP: High-Intensity Weather Prediction Program

NGGPS and HIWPP launched a program to select a dynamical core
for the next-generation forecast model (target: 3 km non-hydrostatic in
10 years). Selected dycores will undergo a substantial re-engineering
effort for novel architectures.

Scaling tests
Idealized baroclinic wave test with embedded fronts (DCMIP 4.1)
non-hydrostatic orographic mountain waves on reduced-radius
sphere, no rotation
idealized supercell thunderstorm on reduced-radius sphere, no
rotation

http://www.nws.noaa.gov/ost/nggps/dycoretesting.html
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NGGPS Mountain Wave test case

http://www.nws.noaa.gov/ost/nggps/dycoretesting.html
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NGGPS Scaling Study

Next steps: two models selected for Phase II: well-known NWP test
cases with common physics (GFS) at 13 km. Results later this year.
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SENA: Software Engineering for Novel Architectures

SENA is a multi-year NOAA effort to prepare key NOAA models for
novel architectures (GPUs and MICs).

SENA metrics of success: fraction of identified models
successfully run on novel architectures.

GFDL projects under SENA:

Close collaboration with compiler groups: PGI (Nvidia) and CCE
(Cray) targeted at OpenACC.
All porting efforts based on well-defined scientific benchmarks
(viz. NGGPS, radiation).
Likely to bear fruit when hardware memory architectures improve:
expected in Volta (GPU-CPU with shared memory) and Knights
Landing (MCDRAM).
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Summary

Moore’s law has taken us from the von Neumann model to the
“sea of functional units” (Kathy Yelick). Not easy to understand,
predict or program performance.
... but the “free lunch” decades are over, they’ve come to take
away your plates.
Coarse-grained parallelism is an area in the current effort to
reclaim performance from the encroaching “sea”.
The “component” abstraction still may let us extract some benefits
out of the machines of this era:

sharing of the wide thread space.
distribute components among heterogeneous hardware?
concerns about stability, conservation, and accuracy.

Presented at AMS, CW2015, GMD paper near submission:
“Coarse-grained component concurrency in Earth System
modeling”, Balaji et al 2016.
NGGPS and SENA efforts: driven by scientific benchmarks.
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